Supplementary material for the article:

Nišavić, M.; Janjić, G. V.; Hozić, A.; Petković, M.; Milčić, M. K.; Vujčić, Z.; Cindrić, M. Positive and Negative Nano-Electrospray Mass Spectrometry of Ruthenated Serum Albumin Supported by Docking Studies: An Integrated Approach towards Defining Metallodrug Binding Sites on Proteins. Metallomics 2018, 10 (4), 587-594. https://doi.org/10.1039/c7mt00330g

Supporting Information

Positive and negative nano-electrospray mass spectrometry of ruthenated serum albumin supported by docking studies: an integrated approach towards defining metallodrug binding sites on proteins

Marija Nišavića , Goran Janjićb, Amela Hozićc , Marijana Petkovića, Zoran Vujčićd, Miloš Milčićd, and Mario Cindrićc*
aDepartment of Physical Chemistry, "Vinča" Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11000 Belgrade, Serbia
bInstitute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, 11000 Belgrade, Serbia
${ }^{c}$ Centre for Proteomics and Mass Spectrometry, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia

[^0]

Fig. S1. Positive ion mode ESI MS spectra of angiotensin II adducts with compounds [Ru(Cltpy)(en)Cl] ${ }^{+}(\mathrm{A}),[\mathrm{Ru}(\mathrm{Cl}-\mathrm{tpy})(\mathrm{dach}) \mathrm{Cl}]^{+}(\mathrm{B})$ and $[\mathrm{Ru}(\mathrm{Cl}-\mathrm{tpy})(\text { bipy }) \mathrm{Cl}]^{+}(\mathrm{C})$. Inset in each spectrum shows isotopic distribution of triply charged ruthenated peptide. Additional peaks at $m / z 737.3$, 764.3 and 785.2 for compounds en, dach and bipy, respectively, correspond to doubly charged ruthenated angiotensin II.

Fig. S2. Negative ion mode ESI MS spectra of angiotensin II adducts with compounds [Ru(Cltpy)(en)Cl] ${ }^{+}(\mathrm{A}),[\mathrm{Ru}(\mathrm{Cl}-\mathrm{tpy})(\text { dach }) \mathrm{Cl}]^{+}(\mathrm{B})$ and $[\mathrm{Ru}(\mathrm{Cl}-\mathrm{tpy})(\text { bipy }) \mathrm{Cl}]^{+}(\mathrm{C})$. Inset in each spectrum shows isotopic distribution of singly charged ruthenated peptide. Two subsequent peaks in each spectrum (at $m / z 1515.5$ and 1563.6 for en compound, 1571.6 and 1617.6 for dach and 1613.5 and 1659.5 for bipy compound) represent mono- and di-formic acid adducts. Signal at 1044.5 in each spectrum correspond to free angiotensin II.

Fig. S3. Enlarged positive ion mode LE MS^{E} spectra showing [Ru(Cl-tpy)(en)]-bound HSA sequences: DAHK (A), SEVAHR (B), SLHTLFGDK (C), HPDYSVVLLLR (D), DVFLGMFLYEYAR (E) and HPYFYAPELLFFAK (F). Target sequences are marked with a black asterisk in each spectrum.

Fig. S4. Enlarged positive ion mode LE MS ${ }^{E}$ spectra showing [Ru(Cl-tpy)(dach)]-bound HSA sequences: DAHK (A), SEVAHR (B), SLHTLFGDK (C), HPDYSVVVLLLR (D), DVFLGMFLYEYAR (E) and HPYFYAPELLFFAK (F). Target sequences are marked with a black asterisk in each spectrum.

Fig. S5. Enlarged positive ion mode LE MSE spectra showing [Ru(Cl-tpy)(bipy)]-bound HSA sequences: DAHK (A), SEVAHR (B), SLHTLFGDK (C) and DVFLGMFLYEYAR (D). Target sequences are marked with a black asterisk in each spectrum.

Fig. S6. PLGS generated HE MS ${ }^{\mathrm{E}}$ spectrum of ${ }^{338}{ }^{3} \mathrm{HPDYSVVLLLR}^{348} \mathrm{HSA}$ sequence adduct with compound [Ru(Cl-tpy)(en)Cl] ${ }^{+}$. The identified precursor is triply positively charged ion with a mass of 1732 Da . The identified mass corresponds to the peptide adduct with compound $[\mathrm{Ru}(\mathrm{Cl}-$ tpy)(en)Cl] ${ }^{+}$, after Cl ligand hydrolysis.

Table S1. PLGS software identified HE MSE peptide fragment ions. marks neutral loss ($\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$).

Peptide sequence	Number of ions	Fragment ion identity
${ }^{5} \mathrm{SEVA} \underline{H} \mathrm{R}^{10}$	12	$b_{2}, b_{3}, b_{3}, b_{4}, b_{4}, b_{5}, y_{2}, y_{3}, y_{4}, y_{5}, y_{5}, y_{6}$
${ }^{65}$ SLHTLFGDK ${ }^{73}$	9	$\mathrm{y}_{2}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{3}, \mathrm{y}_{4}, \mathrm{y}_{5}, \mathrm{y}_{6}, \mathrm{y}_{7}, \mathrm{y}_{7}$
${ }^{146} \underline{\text { HPYYFYAPELLFFAK }}{ }^{159}$	10	$\mathrm{b}_{10}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}, \mathrm{y}_{6}, \mathrm{y}_{7}, \mathrm{y}_{8}, \mathrm{y}_{12}, \mathrm{y}_{13}, \mathrm{y}_{14}$
${ }^{324}$ DVFLGMFLYEYAR ${ }^{336}$	7	$\mathrm{b}_{1}, \mathrm{~b}_{11}, \mathrm{y}_{8}, \mathrm{y}_{9}, \mathrm{y}_{10}, \mathrm{y}_{11}, \mathrm{y}_{12}$
${ }^{338} \underline{H}$ PDYSVVLLLR ${ }^{348}$	13	$b_{2}, b_{5}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}, y_{7}, y_{8}, y_{8}, y_{9}, y_{10}, y_{11}$

Fig. S7. Enlarged negative ion mode LE MSE spectra showing [Ru(Cl-tpy)(en)]-bound HSA sequences: DAHK (A), SEVAHR (B), SLHTLFGDK (C), HPDYSVVLLLR (D), DVFLGMFLYEYAR (E) and HPYFYAPELLFFAK (F). Target sequences are marked with a black asterisk in each spectrum.

Fig. S8. Enlarged negative ion mode LE MS ${ }^{\mathrm{E}}$ spectra showing [Ru(Cl-tpy)(dach)]-bound HSA sequences: DAHK (A), SEVAHR (B), SLHTLFGDK (C), HPDYSVVVLLLR (D), DVFLGMFLYEYAR (E) and HPYFYAPELLFFAK (F). Target sequences are marked with a black asterisk in each spectrum.

Fig. S9. Enlarged negative ion mode LE MSE spectra showing [Ru(Cl-tpy)(dach)]-bound HSA sequences: DAHK (A), SEVAHR (B), SLHTLFGDK (C) and DVFLGMFLYEYAR (D). Target sequences are marked with a black asterisk in each spectrum.

Fig. S10. HSA structure with major drug binding sites (A) and spatial localisation of MS-identified sequences for the binding of compounds $[\mathrm{Ru}(\mathrm{Cl}-\mathrm{tpy})(\mathrm{en}) \mathrm{Cl}]^{+},[\mathrm{Ru}(\mathrm{Cl}-\mathrm{tpy})(\text { dach }) \mathrm{Cl}]^{+}$and $[\mathrm{Ru}(\mathrm{Cl}-$ tpy)(bipy)Cl] ${ }^{+}$.

Fig. S11. HSA binding sites for chloro, hydroxo and aqua forms of compounds [Ru(Cl-tpy)(en)Cl] ${ }^{+}$, $[\mathrm{Ru}(\mathrm{Cl}-\mathrm{tpy})(\text { dach }) \mathrm{Cl}]^{+}$and $[\mathrm{Ru}(\mathrm{Cl}-\mathrm{tpy})(\text { bipy }) \mathrm{Cl}]^{+}$. Chloro forms are shown green, hydroxo red and aqua forms are shown blue. Target MS-identified HSA sequences are highlighted black.

Table S3. Binding energies of chloro, hydroxo and aqua forms of compounds [$\mathrm{Ru}(\mathrm{Cl}-\mathrm{tpy})(\mathrm{en}) \mathrm{Cl}]^{+}$, $[\mathrm{Ru}(\mathrm{Cl}-\mathrm{tpy})(\text { dach }) \mathrm{Cl}]^{+}$and $[\mathrm{Ru}(\mathrm{Cl}-\mathrm{tpy})(\text { bipy }) \mathrm{Cl}]^{+}$, for each HSA binding site. Binding energies of chloro complexes that correspond to MS-identified sequences are highlighted green, while hydroxo complexes are marked red. The remaining binding energy values that most probably correspond to non-covalent interactions are black.

Ru (II) compound	Binding site No	Binding energy (kcal/mol)		
		-Cl	-OH	$-\mathrm{H}_{2} \mathrm{O}$
1$\left[R u L\left(4^{\prime}-C 1-t p y\right)(e n)\right]$	1	-8,12	-7,80	-7,90
	2	-7,27	-6,32	-7,83
	3	-7,22	-5,84	-7,40
	4	-7,09	-5,77	-
	5	-6,99	-5,42	-
	6	-6,83	-5,34	-
	7	-6,74	-5,22	-
$\mathbf{2}$$\left[R u L\left(4^{\prime}-C l-t p y\right)(d a c h)\right]$	1	-9,14	-8,56	-3,02
	2	-8,67	-7,75	-2,95
	3	-8,53	-7,08	-2,73
	4	-8,53	-6,93	-2,66
	5	-8,38	-6,82	-
	6	-8,37	-6,77	-
	7	-7,46	-6,55	-
	8	-7,18	-6,48	-
	9	-	-6,47	-
3	1	-7,97	-6,33	-1,78
[RuL(4'-Cl-tpy)(bipy)]	2	-6,98	-5,84	-1,44

[^0]: *Correspondence to: mario.cindric@irb.hr

