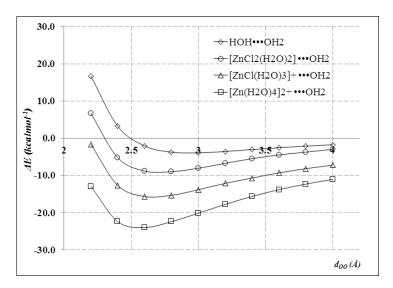
Supplementary data for the article:

Andrić, J. M.; Misini-Ignjatović, M. Z.; Murray, J. S.; Politzer, P.; Zarić, S. D. Hydrogen Bonding between Metal-Ion Complexes and Noncoordinated Water: Electrostatic Potentials and Interaction Energies. *ChemPhysChem* **2016**, 2035–2042. https://doi.org/10.1002/cphc.201501200

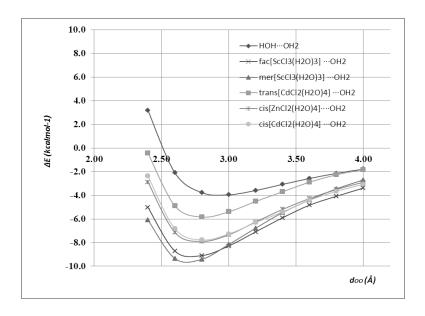
CHEMPHYSCHEM

Supporting Information


Hydrogen Bonding between Metal-Ion Complexes and Noncoordinated Water: Electrostatic Potentials and Interaction Energies

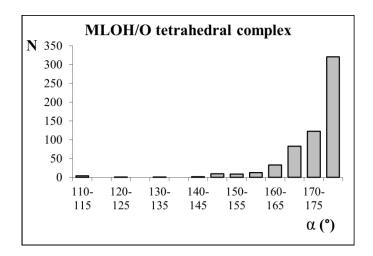
Jelena M. Andrić, Majda Z. Misini-Ignjatović, Jane S. Murray, Peter Politzer, and Snežana D. Zarić $*^{[a,\ b]}$

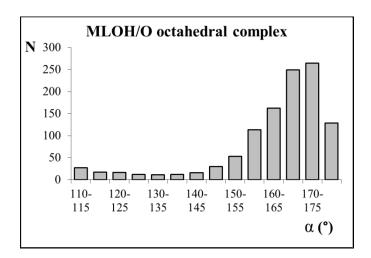
 $cphc_201501200_sm_miscellaneous_information.pdf$


SUPPLEMENTARY INFORMATION

Potential energy curves of tetrahedral model hydrogen-bonded systems using fixed reactant geometries

Figure S1. The calculated interaction energies (ΔE) for four different model hydrogen-bonded systems, using fixed reactant geometries. The interaction energies are plotted as a function of d_{O-O} distance: (a) $H_2O\cdots OH_2$, (b)[$ZnCl_2(H_2O)_2$] $\cdots OH_2$, (c)[$ZnCl(H_2O)_3$] $^+\cdots OH_2$, and (d) $[Zn(H_2O)_4]^{2+}\cdots OH_2$. The results are compared with those for the interaction of two non-coordinated water molecules, HOH---OH₂. The model systems that were used are shown in **Figure 4**.


Potential energy curves of neutral octahedral model hydrogen-bonded systems using fixed reactant geometries


Figure S2. The calculated interaction energies (ΔE) for five different model hydrogen-bonded systems, using fixed reactant geometries. The interaction energies are plotted as a function of the d_{O-O} distance:(a) fac-[ScCl₃(H₂O)₃]···OH₂, (b) mer-[ScCl₃(H₂O)₃]···OH₂, (c)trans-[CdCl₂(H₂O)₄]···OH₂, (d)cis-[CdCl₂(H₂O)₄]···OH₂, (e) cis-[ZnCl₂(H₂O)₄]···OH₂. The results are compared with those for the interaction of two non-coordinated water molecules HOH···OH₂. The model systems used for (a) – (e) are shown in **Figure 5**.

The distribution of cone-corrected angle α

The preference for linear contact geometries in O–H/O interactions of coordinated water molecule can be observed by the distributions of angle α . To obtain more reliable data, cone correction should be used [1]. Namely, the angle covered by an angular interval $\Delta\alpha$ is smaller for nearly linear angles α than for bent ones and the angular distribution must be weighted by a correction factor of 1/sin α to properly reflect angular preferences. In corrected diagrams larger fractions of the interactions are obtained at larger angles.

Figure S3. The distribution of cone-corrected angle α (Fig. 3) for tetrahedral complexes.

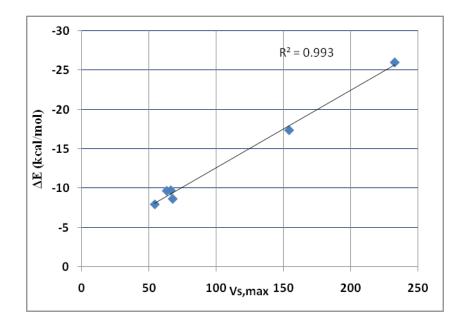
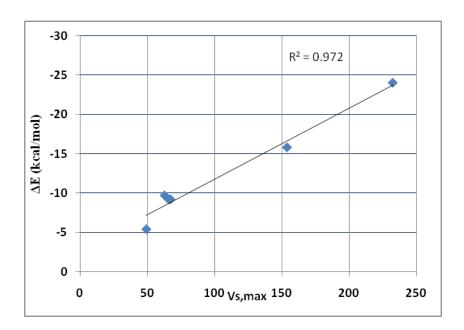


Figure S4. The distribution of cone-corrected angle α (Fig. 3) for octahedral complexes.

[1] J. Kroon and J. A. Kanters, *Nature*, **1974**, 248, 667–669


Correlation between Interaction energies and V_{S,max}

Both interaction energies (ΔE) and $V_{S,max}$ for hydrogen-bonded systems, obtained with fixed geometries of monomers, are calculated by using B3PW91/6-31G** for [ZnCl₂(H₂O)₂], [ZnCl(H₂O)₃]⁺, [Zn(H₂O)₄]²⁺, trans-[ZnCl₂(H₂O)₄], fac-[ScCl₃(H₂O)₃] and mer-[ScCl₃(H₂O)₃] complexes. The correlation between interaction energies and $V_{S,max}$ is very high, the R value is 0.993.

Figure S5. Plot of ΔE vs. $V_{S,max}$ for hydrogen-bonded systems with fixed reactant geometries. The $V_{S,max}$ are for the interacting hydrogens prior to interaction. The correlation coefficient (R) value is 0.993.

The correlation between ΔE and $V_{S,max}$ for hydrogen-bonded systems obtained with fixed geometries of monomers for $[ZnCl_2(H_2O)_2]$, $[ZnCl(H_2O)_3]^+$, $[Zn(H_2O)_4]^{2+}$, trans- $[ZnCl_2(H_2O)_4]$, fac- $[ScCl_3(H_2O)_3]$ and mer- $[ScCl_3(H_2O)_3]$ complexes is presented for interaction energies calculated at MP2/def2-pvQZ level and $V_{S,max}$ calculated at B3PW91/6-31G** level. The R value is 0.972.

Figure S6. Plot of ΔE vs. $V_{S,max}$ for hydrogen-bonded systems with fixed reactant geometries. The $V_{S,max}$ are for the interacting hydrogens prior to interaction. The correlation coefficient (R) value is 0.972.