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ABSTRACT: High-performance thin-layer chromatography (HPTLC) is an advantageous 

analytical technique for analysis of complex samples. Combined with multivariate data analysis, 

it turns out to be a powerful tool for profiling of many samples in parallel. So far, chromatogram 

analysis has been time-consuming and required the application of at least two software packages 

to convert HPTLC chromatograms into a numerical data matrix. Hence, this study aimed to 

develop a powerful, all in one open-source software for user-friendly image processing and 

multivariate analysis of HPTLC chromatograms. Using the caret package for machine learning, 

the software was set up in the R programming language with an HTML-user interface created by 

the shiny package. The newly developed software, called rTLC, is deployed online and 

instructions for direct use as web application, and in case required, for local installation are 

available on GitHub. rTLC was created especially for routine use in planar chromatography. It 

provides the necessary tools to guide the user in a fast protocol to the statistical data output (e. g., 

data extraction, preprocessing techniques, variable selection and data analysis). rTLC offers a 

standardized procedure and informative visualization tools that allow the user to explore the data 

in a reproducible and comprehensive way. As proof-of-principle of rTLC, German propolis 

samples were analyzed using pattern recognition techniques, principal component analysis, 

hierarchic cluster analysis and predictive techniques, such as random forest and support vector 

machines. 

 

KEYWORDS: High-performance thin-layer chromatography; Multivariate analysis; 

Chemometrics; Open-source software, R programming language; Caret package  
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INTRODUCTION: Natural extracts may contain thousands of individual compounds, and the 

majority of these are present in low concentrations down to the trace level. Though it is 

challenging, it is important to obtain reliable fingerprints that represent sound profiles of 

physiologically active compounds1. Its simplicity, cost-effective operation and the possibility of 

simultaneous analysis of up to 20 samples in parallel makes high-performance thin-layer 

chromatography (HPTLC) a technique of choice in herbal and food analysis2, 3. For evaluation, 

the HPTLC fingerprint of a complex sample is visually compared to that of a certified reference 

sample or to marker compounds being characteristic for the respective sample. The main 

disadvantage of such a manual pattern recognition technique and its visual comparison is its 

subjectivity, and it highly depends on the analyst's perception. Hence, hyphenation of HPTLC 

with high-sophisticated multivariate techniques provides objective fingerprints, mainly based on 

mathematical models4,5. As HPTLC chromatograms contain hundreds of pixels, this 

multidimensionality is used to extract a maximum of information out of the chromatograms4. For 

example, pattern recognition techniques can recognize chemical compound patterns, identify 

characteristic marker compounds as well as classify unknown samples according to their 

biological activity. 

Though increasing, there are still a limited number of research papers on the combination of 

HPTLC with multivariate data analysis. Most of these are based on the investigation of propolis, 

herbal samples, biopolymers and microalgae6-16. Although propolis is one of the most 

investigated honeybee product, the separation of its complex phenolic compound composition is 

still challenging analysts. After derivatization with Neu’s reagent and detection at UV 366 nm, 

phenolic components showed differently colored bands. Such colorful HPTLC chromatograms 

are highly appropriate input data for evaluation by multivariate data analysis. There exists a wide 
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range of derivatization reagents with different specificity and capability of detection. The 

resulting characteristically colored bands generate different profiles on the red, green and blue 

(RGB) channels. Thus, derivatization reagents can substantially influence the separation 

performance and data evaluation6. 

Contrary to other chromatography techniques, such as high performance liquid chromatography 

(HPLC) and gas chromatography (GC) which offer a direct export of data for further multivariate 

analysis, images of HPTLC chromatograms must first be converted to a numerical data matrix. 

Various software, toolboxes and algorithms have been applied for image processing and 

multivariate analysis of HPTLC chromatograms so far (Table 1)6-16. Such packages lack in 

domain-specific functionality, which results in a manual, lumbering and time-consuming 

pipeline of the data handling. The user is forced to open, process and save the data through 

different software packages and toolboxes to perform the analysis6-16. 

For the first time, we describe and introduce rTLC in this study. It is a newly developed open-

source web application for image processing and multivariate analysis of HPTLC 

chromatograms. The focus is laid on the different possibilities and advantages of the application, 

such as a fast and simple image processing workflow and application of a range of chemometric 

techniques suited for planar chromatography. One driving force for developing rTLC was to 

provide users with a unique solution to analyze HPTLC data. The access to a simple and accurate 

open-source web application, instead of purchasing a number of licenses, was another impetus. 

Many useful features for the analysis of HPTLC data, such as line profile of target compounds, 

band comparison, signal preprocessing as well as comma separated value (CSV) export for 

analysis on other platforms were integrated. Pattern recognition techniques such as principal 

component analysis (PCA), hierarchical cluster analysis (HCA) and heat map are applicable on 
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separate channels (RGB and gray scale) or in combination. Prediction techniques such as random 

forest (RF), linear discriminant analysis (LDA), support vector machine (SVM), partial least 

square (PLS) and classification and regression tree (CART) analysis were integrated as well. The 

increasing number of publications in the field of planar chromatography hyphenated with 

multivariate analysis motivated to redesign software and add many new tools. This makes rTLC 

suitable for a wide range of applications in herbal, food and environmental science. 

 

EXPERIMENTAL SECTION 

Set-Up of the Open-Source Web Application. The rTLC application is written with the R 

programming language17. R is an open-source language and environment for statistical 

computing and graphics. A key feature of R lies in its community of sharing users, who 

contribute to the extension of the language via packages, allowing others to use their work. rTLC 

uses in particular the shiny package to create an HTML based user interface18 and the caret 

package for machine learning19. This way, the application was deployed online and is directly 

accessible via a modern internet browser having internet connection. As it is a web application, 

the user needs not to install software. Direct use of rTLC (http://shinyapps.ernaehrung.uni-

giessen.de/rtlc), and in case required, instructions for local installation are available on GitHub: 

https://github.com/DimitriF/rTLC-apps.  

Example Data Set. A given sample set was used as proof-of-principle of the newly developed 

software. 106 samples of German propolis obtained from the Apicultural State Institute 

(Stuttgart, Germany) were analyzed in a previous study20, 21. The resulting 7 chromatograms in 

the JPEG format were manually labeled before the statistical analysis, leading to the assignment 
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of 37 blue-type and 69 orange-type samples of German propolis. The rTLC parameters set are 

discussed subsequently.  

 

RESULTS AND DISCUSSIONS 

rTLC, the newly developed open-source web application for image processing and multivariate 

analysis of HPTLC chromatograms, is introduced for the first time. The simple and streamlined 

workflow (Figure 1) provides the necessary tools to reproducibly guide the user in a fast protocol 

to the statistical data output. For regular cases, the evaluation of HPTLC chromatograms took 

only few minutes. The proof-of-principle was demonstrated via a German propolis data set, 

which was also made available as demonstration file in the rTLC software. Thus, the user is able 

to follow and reproduce the results reported below. 

Data Input. The user had to upload two files in rTLC to provide an appropriate data set for 

image evaluation and multivariate data analysis: (1) HPTLC chromatograms which contain the 

independent variables and (2) a batch file which contains the dependent variables about each 

sample on the plates, such as classes, botanical and geographical origin. Information on the 

experimental conditions is necessary to automatically extract each chromatogram from the 

HPTLC plate, e.g. the distances used during sample application and chromatography. rTLC 

supports the upload of commonly used image formats such as jpeg, tiff and png. The software 

computes the horizontal mean for each pixel of the chromatogram on the RGB channels as well 

as the gray scale, which is the mean of those three channels. At the end of this step, the data are 

in the form of a 3D array with samples as rows, RF as columns and channels as layers (Figure 2). 

rTLC provides tools for line profiles of target compounds, comparison between tracks, pattern 

identification as well as identification of characteristic chemical and biological markers. The 
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profile comparison of RGB channels as well as gray scale helps to find similarities and 

dissimilarities between samples before and after signal preprocessing. 

Data Preprocessing. Recently, preprocessing methods used in HPTLC fingerprinting were 

discussed22. Among others, the appearance of a non-homogeneous background after 

derivatization, an increased noise level and band shifts are caused by variation in mobile and 

vapor phase composition, humidity, temperature, operator handling and instrumental instability. 

Thus, warping techniques are recommended to mitigate such experimental drawbacks4, 23. Two 

peak alignment procedures were integrated into the rTLC software and are available to correct 

inter- and intra-plate band shifts24: (1) parametric time warping and (2) dynamic time warping. 

Further integrated options for data preprocessing such as denoising, normalization, and baseline 

removal aimed at improving the quality of the data set. The software provides the Savitzky-

Golay and median filter, which are denoising/filtering methods commonly used in preprocessing 

of HPTLC chromatograms4, 5. The baseline removal process was found to be mandatory in 

almost all cases4, whereas good statistical models were also obtained without baseline 

correction7. Hence, it is recommended to compare results with and without baseline correction. 

Also, a normalization step is not mandatory and there is no consensus when it is obligatory - 

sometimes it makes the results better, sometimes even worse. The preferred method of signal 

normalization is the standard normal variate (SNV) method. Finally, rTLC provides auto-scaling 

and mean centering to transform variables in the same unit5, 6, 24. The selection and need for 

preprocessing tools depends on the project and may be chosen by the users to obtain ready-to-use 

data for statistical analysis. 

Variable Selection. HPTLC chromatograms provide a high number of variables for the given, 

often limited number of available samples. There are several approaches regarding the nature of 
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used variables for multivariate analysis. Important variables that contain information for the 

aimed classification should be kept, whereas variables encoding the noise and/or with no 

discriminating power should be removed25. For this purpose, rTLC provides options for careful 

selection of variables for a specific channel or all channels together. The statistical analysis part 

also informs on this selection, which can be optimized to keep the important information only. 

Exploratory Statistics. The user is only working with a data matrix, i.e. with samples as rows 

and variables as columns; with this, it is possible to compute pattern recognition techniques such 

as PCA, HCA and heatmap. For each of these techniques, informative visualization tools are 

available that illustrate the data in various perspectives and allow the user to highlight patterns 

by comparing the results with a chosen column of the batch file. For both, beginners and 

experienced R-users, an editor is available and can be used for other types of techniques or 

custom-made plots. 

Predictive Statistics. With the same matrix as mentioned before, this feature allows the user to 

train a predictive model, used for the subsequent prediction of the properties of new samples. 

There are two main techniques in predictive statistics, i.e. classification and regression; both are 

available in the software. Before the training, the data set is split into training and test set to 

produce a true validation set and avoid overfitting. The application uses the caret package19 of 

the R language to tune a model and choose the optimal parameters for a given algorithm. The 

available predictive techniques are LDA, PCA (regression only), PLS (regression only), RF, 

CART as well as SVM with linear and polynomial kernel. 

A model will be trained for each value of a grid, automatically created but editable, and the 

parameters which give the best validation result will be kept for the final model. The choice of 

the best set of parameters is made according to a cross-validation procedure; available 
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procedures are k-fold cross validation, bootstrapping and leave-one-out-cross-validation. A 

summary metric must be chosen to select the best model. For regression, the statistical 

parameters can be expressed by root mean squared error (RMSE) or R2. For classification, 

accuracy, kappa, sensitivity or sensibility are available as summary metrics. 

Different output tools are available to explore the result, such as confusion matrix of the test set, 

prediction table and model summary. Also here, an editor is available to produce custom-made 

plots. At the end of this step, a model file can be downloaded and used in other sessions to 

predict the properties of new samples. 

Proof-of-Principle of rTLC. HPTLC chromatograms contain comprehensive information regar-

ding the polarity, chemical, and spectral properties of individual compounds in a sample. As a 

case study, HPTLC chromatograms of German propolis samples were used to illustrate the 

practical application of the rTLC software. The HPTLC chromatograms of propolis showed a 

complex mixture of phenolic compounds, and thus, were highly appropriate input data to 

demonstrate the performance and power of rTLC. Visual comparison of the respective HPTLC 

chromatograms and RGB channels (Figure 3A) revealed a difference in the chemical 

composition of the two types of German propolis. The blue type of propolis had several blue 

bands at RF values around 0.2, 0.3 and 0.6 (Figure 3B). The orange type of propolis showed a 

rich phenolic profile and contained characteristic orange and yellow bands in the RF range of 0.1-

0.5, and high fluorescent blue bands in the RF range of 0.5-0.8 (Figure 3C). Next, two 

unsupervised techniques (PCA and HCA) and two supervised techniques (RF and SVM) were 

selected to illustrate the capabilities of multivariate analysis by rTLC. Parametric time warping 

(aligned to the first sample), SNV and mean centering were used as preprocessing step. 
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10 

Unsupervised Techniques. Commonly used pattern recognition techniques5, 6 as PCA and HCA, 

are performed by rTLC in a fast and simple way. PCA was applied on the data set for the RGB 

channels as well as on the grayscale image. The variable of interest was class as color 

assignment (labelling and different symbols were not chosen). The blue channel (Figure 4A) and 

grayscale data (Figure 4D) with a RF range of 0-1 as variable selection showed the best 

discrimination between the two sorts of German propolis samples and their statistical 

performances were discussed subsequently.  

In case of the blue channel data, PCA resulted in a five-component model, explaining 78.41% of 

the total variance. PC1 described 40.99%, while PC2 explained 15.34% of the total variance 

(Figure 4A). The most influential phenolic compounds were identified using the loading plots. 

For PC1, the compounds at RF 0.04, 0.38, 0.53, 0.66 and 0.98 had positive contributions while 

the compounds at RF 0.29, 0.58 and 0.77 had negative contributions (Figure 4B). For PC2, the 

compounds at RF 0.27, 0.52, 0.63 and 0.82 had positive contributions, while the compounds at RF 

0.06, 0.30, 0.36, 0.56 and 0.72 had negative contributions (Figure 4C). 

In the case of the grayscale image, the total variance explained by the first three PCs was 59.66% 

(PC1: 32.58%, PC2: 15.61%, and PC3: 11.45%) (Figure 4D). The discrimination between the 

two types of propolis samples is mainly driven by the first component. For PC1, positive 

influences were found at RF 0.06, 0.34, 0.39, 0.53 and 0.66 and negative ones at RF 0.28, 0.58 

and 0.79 (Figure 4E). For PC2, positive influences were observed at RF 0.04, 0.36, 0.57 and 0.73 

and negative ones at RF 0.27, 0.52, 0.65 and 0.84 (Figure 4F). Once those influential RF values 

are known, the researcher can apply other analytical techniques or refer to the literature to 

identify such discriminatory compounds. 
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Cluster analysis is an often used classification technique. This algorithm performs a hierarchical 

cluster analysis using the distance between samples. At the beginning, each sample is assigned to 

its own cluster, iteratively, the closest clusters are joined together and the distances between 

clusters are recomputed, continuing until there is only one cluster. The simplest and most 

intuitive way to mathematically define the similarity between objects is based on the Euclidean 

distance. rTLC provides several routes to define the similarity between objects. According to the 

blue channel and grayscale data, there was a good discrimination between the orange- and blue-

type propolis samples, which was in agreement with PCA5-7. For the blue channel, ‘class bis’ (x-

labelling and color), Euclidean distance, ward method and a cluster number of 3 were chosen (2 

clusters for gray scale).  

In the dendrogram of the blue channel data, there were three clusters (Figure 5A). The first 

cluster had a distance of 49 and was mainly composed of orange samples, whereas the second 

cluster had a distance of 25 and was dominated of blue-type propolis samples and the third 

cluster had a distance of 28 and consisted mainly of the latter samples. The dendrogram obtained 

for the grayscale data showed two clusters (Figure 5B). The first cluster contained almost all blue 

samples, while the second cluster consisted mostly of orange samples, the distance were 

respectively 57 and 62. The few blue-type propolis samples grouped into the orange-type cluster 

differed in their patterns compared to the other blue-type propolis samples. These samples can be 

considered as a mixture of both types of propolis due to the natural variation in the chemical 

composition. For such cases, it has to be proven that the variations in the experimental condition 

had been removed during the preprocessing step, as far as possible. 

Supervised Techniques. In supervised techniques, a set of data describing objects of known 

features is used to construct a training set that is used to predict those features for new samples 
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then. Supervised techniques were applied in a wide range of chromatographic, 

spectrophotometric and sensorial data, for quantification, fingerprinting, authentication and 

detection of adulteration of food and herbal products25. The feature can be discrete, like the 

geographical or botanical origin, or continuous like the concentration of a target molecule in the 

investigated samples.  

As a first step of the supervised procedure, the data were split between training and test set. 

Secondly, preprocessing techniques were applied on the training and test set. Note for 

normalization, that the mean centering and standard deviation of the training set is used to 

standardize the test set to avoid overfitting25. After the following variable selection, prediction 

models were built using the training set for each row of the tuning grid and each step of the cross 

validation procedure. Afterwards, the best parameters were selected and the final model was 

trained with those parameters on the entire training set. Lastly, the reliability of the model was 

evaluated using the test set. Two powerful supervised algorithms were selected to present this 

feature: RF and SVM with linear kernel. Like for PCA and HCA, the following preprocessing 

was used: parametric time warping, SNV and mean centering. In each case, the ratio of training 

to test set was 3:1 and the cross validation method was 5-fold cross validation with total accuracy 

as summary metric of choice for the selection of the best model. The outcome was studied for 

each of the three channels and the grayscale image. In all cases, the prediction efficiency was 

high and demonstrated the power of the technique to reproduce human decisions.  

Though RF has rarely been used as multivariate tool in food and herbal research so far, there are 

several benefits that could make the RF algorithm an appropriate supervised tool in HPTLC 

analysis: it can be used (1) when there are much more variables than observations, (2) for two- or 

multi-classification and (3) for a good predictive performance, even when most of the predictive 
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variables are noise, and thus a preselection of variables is not required. As another benefit, this 

algorithm does not need standardization. The RF classifier needs optimization for two 

parameters to generate a prediction model: the number of classification trees desired (ntree) and 

the number of variables (mtry) which are used for tree growing in each tree. The accepted default 

values for those two parameters are 500 for ntree, and sqrt (mall) for mtry, whereby mall is the 

total number of variables in the original data set. The most important parameter, mtry, can be 

optimized with the caret package, in contrast to the ntree parameter. This optimization led to 

more accurate models26, 27, 28. By the way, the option PLS resulted in an equivalent outcome to 

RF and SVM. 

For all channels, the accuracy of classification of the training set was 100%. Those models were 

clearly overfitted and this outcome must not be taken into account to judge a model. The 

confusion matrix was obtained for each channel on the test set and during the cross validation 

(Table 2 A). The green channel showed a good accuracy for cross validation and for the test set. 

For the blue channel data and gray scale image, the comparison between cross validation and test 

set showed more consistency, which was in accordance to PCA and HCA. Detailed statistical 

parameters for the blue channel showed the performance of the model according to different 

metrics (Table 2 B). The importance of the variables for the RF algorithm trained on the blue 

channel is evident (Figure 6). In contrast to the variables highlighted in the loading plots of the 

PCA, the model resulted in other variables to discriminate the two types of propolis.  

The SVM algorithm separates the classes by an optimal hyper plane that maximizes the distances 

between classes by defining boundaries for the closest classes (support vectors) from the margins 

of the class. This way, SVM minimizes the training error with regard to the separation of the 

considered classes by using the least complex boundaries out of all possible ones. The optimal 
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hyper plane is obtained by an interactive algorithm that minimizes an error function that contains 

a parameter (penalty error) to control the complexity of the model and to avoid overfitting24, 25. 

Even if the results for each channel and the grayscale image (Table 3 A) were comparable with 

the RF results, this algorithm performed slightly worse in particular on the cross-validation data 

set. The tuning step chose values of 0.25 for cost and 2 for gamma, except for the blue channel 

where the optimum cost was 0.5. Detailed statistical parameters for the grayscale showed the 

performance of the model according to different metrics (Table 3 B). 

 

CONCLUSIONS 

According to our knowledge, there was no dedicated all-in-one software for a streamlined image 

evaluation and multivariate analysis of HPTLC chromatograms. The newly developed rTLC 

application was designed as user-friendly open-source software to ease fingerprint comparisons. 

New perspectives and conclusions on the data set are supported by a wide range of visualization 

tools, owed to high plotting capabilities of the R software. A great step forward was achieved by 

a substantial reduction of the analysis time. rTLC solved the supervised and unsupervised data 

handling within few minutes, whereas the current practice needs several hours using at least two 

different software packages. To the best of our knowledge, rTLC is the most concise tool 

available for application of different pattern recognition and prediction techniques for HPTLC 

chromatograms. On the one hand, the open-source asset of this application may attract users for 

the powerful combination of HPTLC and multivariate analysis. On the other hand, it may 

encourage the users to contribute to this technology through feedback, discussing ideas and 

adding new functionalities to the software. 
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Table 1 

Overview of publications related to HPTLC and multivariate analysis. 

No. Samples Multivariate techniques Software Ref. 

1 Herbs PCA, Artificial neural network (ANN) Matlab R2007 (MathWorks, Natick, MA, USA) 10 

2 Propolis PCA, HCA, 
Partial least square-discriminant analysis  

(PLS-DA) 

Matlab R2011a (MathWorks, Natick, MA, USA), 
PLS toolbox version 6.2.1 (Eigenvector Research Incorporated, Manson, WA, USA) 
Image J1.48c version (Research Services Branch, National Institute of Mental Health, 

Bethesda, MD, USA.) 

6 

3 Herbs PCA,  
PLS-DA 

Orthogonal PLS-DA (O-PLS DA) 

SIMCA-P+ Version 12 (Umetrics AB, Umea, Sweden), 
VideoScan (CAMAG. Muttenz, Switzerland) 

12 

4 Propolis PCA, HCA, LDA Matlab R2011a (MathWorks, Natick, MA, USA), 
PLS toolbox version 6.2.1 (Eigenvector Research Incorporated, Manson, WA, USA) 

SPSS Version 21 (BM Corporation, Armonk, NY, USA), 
LIBSVM Version 3.1629  

7 

5 Herbs K-nearest neighbors 
Classification and regression tree (CART) 

Successive projection algorithm-linear  
discriminant analysis (SPA-LDA) 

PCA-discriminant analysis (PCA-DA) 
Support vector machine-discriminant analysis  

(SVM-DA), PLS-DA 

Matlab R2012b (MathWorks, Natick, MA, USA) 
PLS toolbox version 7.3.1 (Eigenvector Research Incorporated, Manson, WA, USA) 

SPA toolbox 1.0(Homemade programs written in Matlab) 
Classification toolbox version 2.0 (Milano Chemometrics and 

QSAR Research Group, Milano, Italy) 

21 

6 Herbs PCA XLSTAT (Addinsoft, New York, NY, USA) 9 

7 Herbs PCA Origin pro (OriginLab, Northampton, MA, USA) 13 

8 Propolis PCA, HCA TLC Analyzer30 8 

9 Propolis Similarity analysis, HCA 
K-means clustering, ANN, SVM 

Self-programmed software Xe2 IDE (Embarcadero, San Francisco, CA, USA), 
SPSS Version 21 (IBM Corporation, Armonk, NY, USA),LIBSVM Version 3.1629  

11 

10 Biopolymers PCA, HCA Matlab R2011a (MathWorks, Natick, MA, USA), 
PLS toolbox version 6.2.1 (Eigenvector Research Incorporated, Manson, WA, USA) 
Image J1.48c version (Research Services Branch, National Institute of Mental Health, 

Bethesda, MD, USA.) 

16 
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Table 2 

RF algorithm model: confusion matrix for the test set of blue- and orange-type propolis samples as well as cross validation set for each 

channel (A) and detailed summary metrics for the blue channel on the three data sets (accuracy, sensitivity and specificity; B). 

A     Test set Cross validation 

 Channel Optimum 

mtry 

  Blue-

type 

Orange-

type  

Accuracy Blue-

type 

Orange-

type 

Accuracy 

 Red 2 Blue 6 6 0.7857 14 11 0.8077 

 Orange 0 16 4 49 

 Green 15 Blue 9 3 0.8571 16 9 0.8590 

 Orange 1 15 2 51 

 Blue 2 Blue 9 3 0.8929 17 8 0.8333 

 Orange 0 16 5 48 

 Gray 2 Blue 9 3 0.8929  16 9 0.8590 

 Orange 0 16 2 51 

B RF model parameters Accuracy Sensitivity Specificity 

 Training set 1.0000 1.0000 1.0000 

 Test set 0.8929 1.0000 0.8421 

 Cross validation 0.8333 0.7727 0.8571 
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Table 3 

SVM model with linear kernel: Confusion matrix for the test set of blue- and orange-type propolis samples and cross-validation set for 

each channel (A) and summary metrics for the grayscale image data on the three data sets (accuracy, sensitivity and specificity; B). 

A  Optimum  Test set Cross validation 

 Channel Cost Gamma Type Blue-

type 

Orange-

type 

Accuracy Blue-

type 

Orange-

type 

Accuracy 

 Red 0.25 2 Blue 6 6 0.7143 19 6 0.7692 

 Orange 2 14 12 41 

 Green 0.25 2 Blue 8 4 0.8214 18 7 0.8077 

 Orange 1 15 8 45 

 Blue 0.5 2 Blue 9 3 0.8214 17 8 0.7564 

 Orange 2 14 11 42 

 Gray 0.25 2 Blue 8 4 0.8517 18 7 0.8590 

 Orange 0 16 4 49 

B SVM model parameters Accuracy Sensitivity Specificity 

 Training set 1.0000 1.0000 1.0000 

 Test set 0.8571 1.0000 0.8000 

 Cross validation 0.8590 0.8182 0.8750 
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List of figures 

Figure 1. Workflow of the newly developed rTLC software performed within few minutes for regular cases. 

Figure 2. Processing of the experimental parameters for extraction of the HPTLC chromatograms to obtain the HPTLC densitograms. 

Figure 3. RGB channels (A) and HPTLC chromatograms of the phenolic profiles of the blue-type (B) and orange-type (C) German 

propolis samples. 

Figure 4. PC scores (A and D) and loading plots according to the blue channel (B and C) and grayscale image (E and F) evaluation. 

Figure 5. Dendrograms for blue channel (A) and grayscale (B) image evaluation of the German propolis samples. 

Figure 6. Variable importance for the RF algorithm model trained with the blue channel in the discrimination of orange- and blue-

type propolis samples (red: variables of PCA loading plots). 
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