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Graphical abstract 

 

 

 

Highlights 

 Esters of 1,2-ethane and 1,3-propanediamine-N,N'-di-2-(3-cyclohexyl)propanoic acid; 

 Gastrointestinal absorption and membrane retention were predicted using PAMPA; 

 Membrane retention is in correlation with previous results of cytotoxic activity; 

 QSPR and QSRR analyses were performed; 

 New derivatives with favourable absorption and retention properties were designed; 

 
 

 

ABSTRACT 

 

Passive gastrointestinal absorption and membrane retention of twelve esters of (S,S)-

ethylenediamine-N,N'-di-2-(3-cyclohexyl)propanoic acid (EDCP) and (S,S)-1,3-propanediamine-

N,N'-di-2-(3-cyclohexyl)propanoic acid (PDCP), as well as of these two non-esterified acids were 

estimated using PAMPA test. Artificial PAMPA membrane used in this study for the simulation 

of gastrointestinal barrier was solution of egg lecithin in dodecane (1 % w/v). All tested 
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compounds belong to class III (high membrane retention and low permeation), whereas EDCP, 

dipentyl ester of PDCP (DPE-PDCP) and diisopentyl ester of PDCP (DIPE-PDCP) belong to 

class I (negligible membrane retention and low permeation). Finally, quantitative structure – 

permeability and structure – retention relationships models were created in order to find 

quantitative relationships between physico-chemical properties of tested compounds and PAMPA 

membrane permeability/membrane retention parameters. Statistically the most reliable models 

were analysed and used for the design of new compounds for which favourable membrane 

permeability and retention can be expected. 

 

 

Keywords: (S,S)-ethylenediamine-N,N'-di-2-(3-cyclohexyl)propanoic acid and (S,S)-1,3-

propanediamine-N,N'-di-2-(3-cyclohexyl)propanoic acid derivatives; PAMPA; membrane 

permeability; membrane retention 

 

 

 

1. Introduction 

 

Chemotherapy is one of commonly used strategies in clinical protocols for treatment of cancer 

diseases with different localization. However, this therapy is usually associated with adverse side 

effects and resistance. Therefore, the discovery of new anticancer compounds has become one of 

the most important goals in medicinal chemistry. 
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Recent studies have shown that ethylenediamine-type ligands can induce anticancer activity in 

various types of cancer cell lines [1]. A set of twelve compounds representing ester derivatives of 

(S,S)-ethylenediamine-N,N'-di-2-(3-cyclohexyl)propanoic acid and (S,S)-1,3-propanediamine-

N,N'-di-2-(3-cyclohexyl)propanoic acid (Fig. 1) has been recently synthesized and physico-

chemically characterized at University of Belgrade – Faculty of Chemistry, Belgrade, Serbia. For 

novel ester derivatives of (S,S)-ethylenediamine-N,N′-di-2-(3-cyclohexyl)propanoic acid toxicity 

towards different cell lines was determined. Methyl, ethyl, and n-propyl esters were toxic to HL-

60, REH, MOLT-4, KG-1, JVM-2, and K-562 leukemic cell lines, while the non-esterified acid 

and n-butyl ester were devoid of cytotoxicity. The ethyl ester exhibited the highest cytotoxicity 

on leukemic cell line HL-60 (IC50 was in the range 11 μM – 45 μM) [2]. 1,3-propanediamine-

N,N’-di-2-(3-cyclohexyl)propanoic acid derivatives were toxic to glioma cell lines. In vitro 

antitumor potential was investigated for methyl, ethyl, n-propyl, and n-butyl esters of (S,S)-1,3-

propanediamine-N,N′-di-2-(3-cyclohexyl)propanoic acid on several tumour cell lines: human 

(U251), and rat (C6) glioma, HL-60, SHSY-5Y, and L929. The n-butyl ester showed the highest 

cytotoxicity to glioma cells, with 24h IC50 values lower than those for cisplatin [3]. 

 

< Fig. 1 > 

 

In vitro assessment of gastrointestinal absorption could be performed using various methods, 

such as Parallel Artificial Membrane Permeability Assay (PAMPA) [4-6], biopartitioning 

micellar chromatography [7,8] and Caco-2 permeability experiments [9,10]. PAMPA has been 

extensively used for gastrointestinal absorption assessment of early drug candidates. It was firstly 

introduced by Kansy et al. [4] and this method is based on passive diffusion of tested compounds 

through artificial membrane. The mostly used artificial membrane is solution of egg lecithin in 
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dodecane (1% w/v) [4], but also other artificial membranes can be used for this purpose, such as 

mixture of hexadecane and hexane [6,11]. PAMPA is a high throughput and low cost method, 

amenable to automation and results obtained enable reliable prediction of in vivo passive 

gastrointestinal absorption. PAMPA is also used to assess membrane retention, which is of 

particular interest for compounds that target membrane proteins or compounds that are applied 

locally [12]. PAMPA results could also be used to develop quantitative structure – permeability 

relationships (QSPR) and quantitative structure – retention relationships (QSRR) models, which 

could be employed for the design of novel derivatives with improved permeability or membrane 

retention [12,13]. In general, QSPR refers to quantitative structure – property relationships 

analyses, but in PAMPA studies permeability is that particular property which is being modelled. 

QSRR usually refers to quantitative structure – chromatography retention relationships analyses, 

but in PAMPA studies membrane retention is used for the development of models.  

The aims of this study were to estimate potential of (S,S)-ethylenediamine-N,N'-di-2-(3-

cyclohexyl)propanoic acid and (S,S)-1,3-propanediamine-N,N'-di-2-(3-cyclohexyl)propanoic acid 

derivatives to be absorbed passively through gastrointestinal tract, to estimate their membrane 

retention properties and to create QSPR and QSRR models that could be used for the design of 

novel derivatives for which improved passive gastrointestinal absorption and membrane retention 

is expected.  

 

 

2. Experimental 

 

2.1. Chemicals 
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Investigated compounds (Fig. 1) were synthesized at University of Belgrade – Faculty of 

Chemistry, Belgrade, Serbia. Methanol (HPLC grade) was obtained from JT Baker 

(Loughborough, UK). Sodium hydroxide (NaOH), phosphoric acid (H3PO4), monosodium 

phosphate dihydrate (NaH2PO4 x 2H2O) and disodium phosphate dihydrate (Na2HPO4 x 2H2O) 

were purchased from Merck (Darmstadt, Germany). Dimethyl sulfoxide (DMSO), trifluoroacetic 

acid (CF3COOH), ammonium acetate (CH3COONH4) and egg lecithin (99%) were purchased 

from Sigma-Aldrich (Saint Louis, Missouri, USA). Dodecane was obtained from Acros organics 

(Geel, Belgium). 

 

2.2. Equipment 

Analyses were performed on a UHPLC-MS system consisting of ACCELA UHPLC and TSQ 

Quantum Access Max triple quadrupole mass spectrometer with a heated electrospray ionization 

(HESI) interface (Thermo Scientific, Waltham, Massachusetts, USA). The column used in this 

study was Thermo Scientific Hypersil GOLD aQ (100 mm x 2.1 mm, 1.9 μm particle size). 

PAMPA was carried out in hydrophobic PVDF 96-well filter plates (MultiScreenTM HTS 

Millipore, Molsheim, France). 

 

2.3 Parallel artificial membrane permeability assay 

Phosphate buffer (pH = 7.4) was prepared by dissolving 13.7 g Na2HPO4 x 2H2O and 4.0 g 

NaH2PO4 x 2H2O in water (1000 ml) and pH value of this solution was adjusted with 0.1 M 

NaOH. Donor solutions were prepared by dissolving investigated substances in DMSO (1 

mg/ml). 50 µl of thus prepared solutions were diluted with phosphate buffer (pH = 7.4) in 5 ml 

volumetric flasks to obtain final solutions (concentrations were approximately 20 µM). Acceptor 
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solutions were prepared by dissolving DMSO in phosphate buffer pH = 7.4 (concentration of 

DMSO was 1% v/v). 

Artificial membrane was prepared by dissolving egg lecithin in dodecane (1 % w/v) and each 

well of the donor plate was coated with 5 µl of this solution. Subsequently, in each well of the 

acceptor plate, 400 µl of acceptor solution was transferred and covered by the donor plate. In 

each well of the donor plate 300 µl of donor solution was transferred. The system was incubated 

16 h at room temperature. After the incubation, concentrations of each investigated substance in 

starting solution – CD(0), donor solution after incubation - CD(t) and acceptor solution after 

incubation – CA(t) were measured in triplicate by UHPLC/MS-MS method [14]. Mobile phase A 

was composed of ammonium acetate (5 mM) - trifluoroacetic acid (99.9:0.1, v/v), whereas 

mobile phase B was composed of methanol - trifluoroacetic acid (99.9:0.1, v/v). MS analysis was 

performed as selected reaction monitoring (SRM) for derivatives of (S,S)-ethylenediamine-N,N'-

di-2-(3-cyclohexyl)propanoic acid and single ion monitoring (SIM) for derivatives of (S,S)-1,3-

propanediamine-N,N'-di-2-(3-cyclohexyl)propanoic acid in positive mode. The monitored ions 

(m/z) are presented in Table S1 (Supplementary material). The spray voltage was 4000 V, 

temperature in the capillary was adjusted to 300 °C and vaporizer temperature was set to 300 °C. 

Sheet gas pressure was 50 units, while the auxiliary valve flow rate was 10 units. MS resolution 

values were defined to correspond to a mass resolution of 0.7 Da. All data were acquired and 

processed by Xcalibur software (Thermo Fisher, San Jose, CA, USA). 

Gastrointestinal membrane permeability parameters (percent of transport (%T) and apparent 

permeability coefficient (Papp)) as well as retention factor (R) were calculated, according to 

following equations:  

%T = 100 · (AR ·VA) /(AD0 · VD)                   (1) 

Papp = (VD · VA) / ((VD + VA) · S · t) · ln [(100 · VD)/ (100 · VD - %T (VD +VA))]                (2) 
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R = [1 - (CD(t)/CD(0))] – [VA · CA(t)/VD · CD(0)]                 (3)  

AD0 and AR - peak areas of the starting solution and the acceptor solution after incubation; 

VA and VD - volumes of acceptor and donor solutions (ml); 

S - surface area of the artificial membrane (0.28 cm2)  

t - incubation time (s); 

CD(0) - concentration of investigated substance in the starting solution (mg/ml);  

CD(t) - concentration of investigated substance in the donor solution after incubation (mg/ml);  

CA(t) - concentration of investigated substance in the acceptor solution after incubation (mg/ml). 

 

2.4. Calculation of molecular descriptors 

2D structures of all tested compounds were generated in MarvinSketch program [15], 

dominant forms of each compound at pH 7.4 were predicted and used for subsequent molecular 

descriptor calculations. Molecular descriptors were calculated using freely available web-based 

platform ChemDes [16]. This platform allows users to compute over 3000 molecular descriptors 

from several open source packages. In this study, 1135 1D, 2D and 3D Chemopy descriptors 

were calculated (for the calculation of 3D descriptors, ChemDes uses the MOPAC software to 

optimize each molecule). After the elimination of those without variance, 873 descriptors were 

retained for further analyses.  

 

 

2.5. QSPR and QSRR analyses  

Descriptor selection as well as multiple linear regression (MLR), partial least squares (PLS) 

and support vector machine (SVM) modelling were performed in Statistica 13 [17].  
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The quantitative structure-permeability relationships (QSPR) and quantitative structure-

retention relationships (QSRR) studies were performed to investigate the correlations between -

logPapp and R (dependent variables) of the tested compounds and their calculated molecular 

descriptors (independent variables). In order to perform relevant comparison between different 

methodologies used to build QSPR models, the same training and test sets were used. For MLR(-

logPapp), PLS(-logPapp) and SVM (-logPapp) test set consisted of 4 compounds (EDCP, DE-

PDCP, DIB-EDCP and DIB-PDCP), while other compounds were chosen as training set. For 

MLR(R), PLS(R) and SVM (R) test set also consisted of 4 compounds (DE-PDCP, DB-PDCP, 

DIB-EDCP and DIPE-PDCP), while other derivatives formed training set. Test sets were formed 

in the way that -logPapp and R of these compounds were homogenously distributed in the whole 

range of -logPapp and R values.  

 

2.5.1 Descriptor selection 

Prior to model building, descriptor selection had to be performed. There are several descriptor 

selection methods, such as genetic algorithm [18], principal component analysis [19] or stepwise 

MLR [12]. In this study, following methods were utilized: forward stepwise MLR and feature 

selection and variable screening (FSVS). FSVS was applied for the selection of descriptors prior 

to MLR(-logPapp), SVM(-logPapp), SVM(R), PLS(-logPapp) and PLS(R) modeling, whereas 

MLR(R) model could not be created using descriptors selected in this way. Therefore, descriptors 

for MLR(R) modelling were selected using forward stepwise MLR.  

In forward stepwise MLR, independent variables are added one by one into the model, 

evaluated at each step and finally retained or eliminated based on specified criteria (F to enter and 

F to remove criteria). In this study, for the selection of descriptors prior to MLR(R) modelling, F 
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to enter was set to 1, whereas F to remove was set to 0 and following descriptors were selected: 

Qass and RDFM14.  

The methods implemented in the FSVS module are specifically designed to handle extremely 

large sets of continuous and/or categorical descriptors and evaluate both linear and nonlinear 

relationships between dependent variable and descriptors. Therefore, descriptors selected in this 

way are suitable for creation of both linear and nonlinear models. During FSVS analysis, the 

range of values in each descriptor is separated into k intervals. The type of investigated 

relationship is defined by the k value. For example, if k = 2 only monotonous relationships 

between descriptors and dependent variable are investigated. By default, ten intervals turned out 

to be the most suitable for the majority of analyses (k = 10). In this study, k was set to 10 and 

following variables were selected: grav and RDFC1 (for MLR(-logPapp) and SVM(-logPapp)), as 

well as DZ and LabuteASA (for SVM(R)).  

 

2.5.2 QSPR and QSRR model building 

MLR was applied to assess linear relationship between calculated molecular descriptors and - 

logPapp and R. Both MLR models were created using forward stepwise multiple regression 

analysis with following criteria: F to enter = 2 and F to remove = 1 (for MLR (-logPapp)); F to 

enter = 1 and F to remove = 0 (for MLR (R)).  

Contrary to MLR, PLS modelling is useful when analysing data with collinear, noisy and 

numerous descriptors. Optimal number of PLS components was selected after the analysis of 

each component’s R2(Y) value and cumulative R2(Y) value, which takes into account 

contribution of all analysed components to the PLS model. The influence of descriptors on 

created model was evaluated on the basis of their scaled regression coefficient values. Finally, 
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optimal PLS(-logPapp) and PLS(R) models consisted of two components and the most influential 

descriptors were analysed.  

Apart from being used as a classification tool, SVM can also be used to generate real values in 

regression analysis and as a nonlinear method in QSAR and QSPR modelling [20,21]. In this 

study, optimal SVM(-logPapp) and SVM(R) models were obtained using radial basis function 

(RBF) Kernel type and regression type 1. Gamma value was optimized on the basis of S.D. ratio 

for training and test set values and was set to 1 in both SVM models. Subsequently, capacity (C) 

and epsilon (Ɛ) values were automatically optimized by the software and optimal values were: C 

= 100 and Ɛ = 0.1 for SVM (-logPapp); C = 10 and Ɛ = 0.1 for SVM(R). Finally, optimal SVM(-

logPapp) consisted of 9 supported vectors (1 bounded) and optimal SVM (R) consisted of 8 

supported vectors (4 bounded).  

Following statistical parameters were calculated and used for the evaluation of quality of 

created QSPR and QSRR models: RMSEE (root mean squared error of estimation), RMSEP (root 

mean squared error of prediction), the F ratio, the p value, r, Q2 (equation (4)) and R2
pred (equation 

(5)).  
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RMSEE value was calculated for training, whereas RMSEP was calculated for test set. Q2 is 

an internal validation parameter used to assess predictive potential of a model for compounds 
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similar to training set. This parameter was calculated according to the leave-one-out (LOO) 

procedure. Each compound of the training set was deleted once, while the remaining ones were 

used to create a model. The developed model was used to predict the value of the deleted 

compound. This procedure was repeated until all the training set compounds were deleted once 

[22]. Q2 was calculated according to the equation (4). In this equation, Y training is average value, 

whereas Yobs(training) is an observed -logPapp or R value of the training set compounds. PRESS was 

calculated after the completion of the LOO procedure, according to the equation (6). In this 

equation, e(i) is difference between observed and predicted -logPapp or R values. R2
pred is an 

external validation parameter used to assess predictive potential of a model for compounds that 

differ in a certain manner from the training set. This parameter was calculated according to the 

equation (5). Yobs(test) is an observed value of -logPapp or R of a test set compound, whereas 

Y training is mean -logPapp or R value of the training set compounds. PRESS was calculated for the 

test set according to the equation (6). High predictive potential of a model could be expected if 

Q2 and R2
pred are higher than 0.5 [22,23].

 

The F-test is based on the ratio MS Regression/MS Residual and evaluates significance of the 

model. The p-value indicates probability level where a model with this F value may be the result 

of just chance. Models with p-value lower than 0.05 are considered significant.  

 

 

3. Results and discussion 

 

3.1. PAMPA test 
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The values of permeation parameter CA(t)/CD(0), apparent permeability coefficient (Papp), 

negative logarithm of Papp (-logPapp) and retention factor (R) are presented in Table 1.  

 

< Table 1 > 

 

On the basis of relationship between R and CA(t)/CD(0) compounds can be classified into four 

classes – substances with negligible membrane retention and low permeation (class I), substances 

with low or negligible membrane retention and high permeation (class II), substances with high 

membrane retention and low permeation (class III) and substances with high membrane retention 

and high permeation (class IV). All compounds tested in this study belong to class III, apart from 

EDCP, DPE-PDCP and DIPE-PDCP, which belong to class I (Fig. 2). 

 

<Fig.2> 

 

Derivatives of (S,S)-ethylenediamine-N,N'-di-2-(3-cyclohexyl)propanoic acid possess higher R 

and Papp than derivatives of (S,S)-1,3-propanediamine-N,N'-di-2-(3-cyclohexyl)propanoic acid. 

The highest values of R were determined for diethyl ester of (S,S)-ethylenediamine-N,N'-di-2-(3-

cyclohexyl)propanoic acid (DE-EDCP), as well as for diethyl and dibutyl esters of (S,S)-1,3-

propanediamine-N,N'-di-2-(3-cyclohexyl)propanoic acid (DE-PDCP and DB-PDCP), whereas the 

lowest values were determined for non-esterified acids EDCP and PDCP. These membrane 

retention data are in good agreement with the results of previous in vitro activity studies on 

various leukemic cell lines, because DE-EDCP and DE-PDCP showed the highest, whereas 

EDCP and PDCP showed the lowest cytotoxic activity [2,3]. These results indicate that possible 

mechanism of cytotoxicity might be related to interactions with membrane proteins, cell or 
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mitochondrial membranes and further design of new derivatives with high membrane retention 

might result in potent cytotoxicity. 

Evaluation of lipophilicity of tested compounds was presented in our previous paper [24]. 

According to these results, length of alkyl chain on ester groups has significant influence on 

lipophilicity. Results presented in this paper show that lipophilicity is not well correlated with 

membrane permeability and length of alkyl chain on ester groups have limited influence on R. 

Therefore, other physico-chemical properties also contribute to membrane permeability and 

retention, which can be clarified by QSPR and QSRR studies.    

 

3.2. QSPR and QSRR studies 

QSPR models (MLR(-logPapp), PLS(-logPapp) and SVM(-logPapp)), QSRR models (MLR(R), 

PLS(R) and SVM(R)) and corresponding statistical parameters are presented in Table 2. 

 

<Table 2> 

 

According to presented results, PLS(R) model should not be taken into further consideration 

since it didn’t pass all validation tests (Q2 = 0.042). The most reliable QSPR model for -logPapp 

prediction is PLS(-logPapp) due to the lowest values of RMSEE (0.127) and RMSEP (0.238), as 

well as due to the highest value of R2
pred (0.893). Similarly, the most reliable QSRR model for the 

prediction of R is SVM(R) due to the lowest values of RMSEE (13.282) and RMSEP (11.161), as 

well as due to the highest values of Q2 (0.641), r (0.986) and R2
pred (0.891). Both selected models 

can be considered to have good predictive capacity due to the Q2>0.5 and R2
pred >0.5. 
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3.2.1. Interpretation of PLS(-logPapp) model and design of novel derivatives 

Descriptors with highest negative influence on -logPapp and consequently highest positive 

influence on permeability are RDFC8, MoRSEC20, MoRSEP10 and MoRSEV10. MoRSEC20, 

MoRSEP10 and MoRSEV10 are 3D MoRSE descriptors based on atomic charge, polarizability 

and van der Waals volume, respectively. Interpretation of these descriptors is very difficult and 

sometimes their meaning is not clear [25-27]. According to Devinyak et al. [28], aromatic rings 

and unsaturated bonds increase values of these descriptors. Therefore, it can be expected that 

replacement of cyclohexyl with cyclohexenyl, cyclohexadienyl or phenyl groups could positively 

affect PAMPA permeability and gastrointestinal absorption.  

Descriptors with highest positive influence on -logPapp and consequently highest negative 

influence on permeability are RDFU6, RDFP5, RDFE6 and RDFV5. RDFU6 is an unweighted 

radial distribution function (RDF) descriptor, whereas RDFP5, RDFE6 and RDFV5 are radial 

distribution function (RDF) descriptors based on atomic polarizability, electronegativity and van 

der Waals value, respectively. Numbers 5 and 6 indicate distance of 3-4 Å from the geometrical 

center, which represents spacer between two –NH groups in tested compounds. To better 

understand the influence of these descriptors on PAMPA permeability, pairs of tested compounds 

with the same distance between –NH groups were analysed. Generally, lower values of these 

descriptors occur within the ethylenediamine in comparison to 1,3-propanediamine derivatives, 

resulting in higher PAMPA permeability of ethylenediamine derivatives. Therefore, the length of 

spacer between two –NH groups is important and design of novel derivatives could be based on 

modifications of length and/or introduction of branched side chain in this part of structure. 

Taking into account these conclusions, twelve derivatives were designed, their molecular 

descriptors were calculated as previously described and -logPapp predicted using PLS(-logPapp) 
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model. These compounds were designed by modifications of DM-EDCP structure (compound 

with highest PAMPA permeability) in the following manner: replacement of one or both 

cyclohexyl groups with one or two unsaturated rings (1-cyclohexenyl, 2-cyclohexenyl or phenyl), 

reduction of the spacer length between two –NH groups and introduction of branched side chains 

in this spacer. Structures of all designed derivatives are presented in Table S2 (Supplementary 

material), whereas five designed derivatives (P1, P2, P3, P4 and P6) with the highest predicted 

PAMPA permeability (lowest -logPapp) are presented in Fig. 3. Predicted -logPapp of these 

derivatives (2.12-2.67) are similar or slightly higher in comparison to DM-EDCP (1.87).  

 

<Fig.3> 

 

 

3.2.2. Interpretation of SVM(R) model and design of novel derivatives 

Descriptors which form SVM(R) model are DZ and LabuteASA. DZ is Pogliani index and 

belongs to topological descriptors. It can be defined as the sum over all non-hydrogen atoms of a 

modified vertex degree calculated as the ratio of the number of valence electrons over the 

principal quantum number of an atom [29]. Relationship between R and Dz values of all tested 

compounds is presented in Fig. 4. 

 

<Fig.4> 

 

Presented graph indicates that optimal values of Dz should be within the range 63 (DM-

PDCP) - 73 (DB-EDCP and DIB-EDCP). In order to keep Dz values in optimal range, design of 

new derivatives should be performed by structural modifications of compounds whose Dz values 
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fall into this range by rearrangement of existing groups and total number of C atoms should not 

be changed. Introduction of functional groups with heteroatoms could have different effects on 

Dz values, which cannot be easily predicted, and it should be evaluated for each designed 

derivative separately.  

LabuteASA is Labute approximate surface area and belongs to MOE-type descriptors. 

Calculation of this descriptor and additional explanation were presented by Labute [30]. 

Relationship between R and LabuteASA values of all tested compounds is presented in Fig. 5.  

 

<Fig.5> 

 

Similarly to Dz, range of optimal LabuteASA values can be defined: 176 (DM-PDCP) - 210 

(DB-EDCP and DIB-EDCP). Therefore, design of new derivatives should be performed in the 

same manner – structural modifications of compounds whose LabuteASA values fall into this 

range by rearrangement of existing groups without the change of total number of C atoms. 

Additionally, isosteric replacements could also be considered.  

On the basis of these conclusions, sixteen derivatives were designed, Dz and LabuteASA 

values were calculated as previously described and R predicted using SVM(R) model. Structures 

of all designed derivatives are presented in Table S3 (Supplementary material), whereas five 

designed derivatives (R1, R9, R14, R15 and R16) with the highest predicted R values are 

presented in Fig. 6. Predicted R values of these derivatives (88.40-91.27) are similar to DE-PDCP 

(91.27). 

 

<Fig.6> 
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4. Conclusions 

Passive gastrointestinal absorption and membrane retention of twelve esters of (S,S)-

ethylenediamine-N,N'-di-2-(3-cyclohexyl)propanoic acid and (S,S)-1,3-propanediamine-N,N'-di-

2-(3-cyclohexyl)propanoic acid, as well as of these two non-esterified acids were estimated using 

PAMPA test, on the basis of permeation (CA(t)/CD(0)), permeability (Papp) and retention (R) 

parameters. All tested compounds belong to class III (high membrane retention and low 

permeation), whereas EDCP, DPE-PDCP and DIPE-PDCP belong to class I (negligible 

membrane retention and low permeation). (S,S)-ethylenediamine-N,N'-di-2-(3-cyclohexyl) 

propanoic acid derivatives possess higher R and Papp than derivatives of (S,S)-1,3-

propanediamine-N,N'-di-2-(3-cyclohexyl)propanoic acid. The highest values of R were 

determined for DE-EDCP, DE-PDCP and DB-PDCP, whereas the lowest values were determined 

for non-esterified acids EDCP and PDCP. Finally, QSPR (MLR(-logPapp), PLS(-logPapp) and 

SVM(-logPapp)) and QSRR (MLR(R), PLS(R) and SVM(R)) models were created in order to find 

quantitative relationships between physico-chemical properties of tested compounds and their 

permeability/retention parameters. Statistically the most reliable models were selected and on the 

basis of their interpretation, new compounds with expected favourable permeability and retention 

were designed. 
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Figure captions 

 

Fig. 1. Chemical structures of tested compounds 

 

Fig. 2. The relationship between R and CA(t)/CD(0) of tested compounds. 
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Fig. 3. Chemical structures of five designed derivatives with highest predicted PAMPA 

permeability (predicted -logPapp values are given in brackets). 

 

Fig. 4. Relationship between R (var3) and Dz (var185). 
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Fig. 5. Relationship between R (var3) and LabuteASA (var298). 

 

Fig. 6. Chemical structures of five designed derivatives with highest predicted membrane 

retention (predicted R values are given in brackets).  

Jo
ur

na
l P

re
-p

ro
of



28 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jo
ur

na
l P

re
-p

ro
of



29 
 

Table 1 

Calculated PAMPA parameters of tested compunds. 

 

Compound CA(t)/CD(0) Papp (x 10-6) -logPapp    R 

EDCP 7.73 2749.9 2.56 2.61 

DM-EDCP 22.00 11540.0 1.94 59.78 

DE-EDCP 1.32 419.3 3.38 95.83 

DP-EDCP 1.74 555.8 3.26 82.46 

DB-EDCP 0.07 20.6 4.69 99.89 

DIB-EDCP 0.93 293.9 3.53 70.94 

PDCP 2.50 810.6 3.09 51.08 

DM-PDCP 4.02 1335.1 2.87 81.64 

DE-PDCP 2.13 686.0 3.16 93.43 

DP-PDCP 1.19 376.4 3.42 76.01 

DB-PDCP 0.03 9.6 5.02 38.07 

DIB-PDCP 0.11 33.6 4.47 46.50 

DPE-PDCP 0.12 37.1 4.43 30.09 

DIPE-PDCP 0.12 38.6 4.41 8.25 
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Table 2 

QSPR and QSRR models with corresponding statistical parameters. 

a grav – Gravitational 3D index; RDFC1 - Radial distribution function (RDF) descriptor based on atomic charge;  

b RDFC8 - Radial distribution function (RDF) descriptor based on atomic charge; MoRSEC20 - 3D MoRSE descriptor based on atomic charge;  MoRSEP10 - 3D 

MoRSE descriptor based on atomic polarizability; MoRSEV10 - 3D MoRSE descriptor based on atomic van der Waals volume; RDFU6 - Unweighted radial 

distribution function (RDF) descriptor; RDFP5 - Radial distribution function (RDF) descriptor based on atomic polarizability; RDFE6 - Radial distribution 

function (RDF) descriptor based on atomic electronegativity; RDFV5 - Radial distribution function (RDF) descriptor based on atomic van der Waals volume;  

c Qass - Sum of squares of charges on H,C,N,O and all atoms; RDFM14 - Radial distribution function (RDF) descriptors based on atomic mass;  

d RDFC6 - Radial distribution function (RDF) descriptor based on atomic charge; MoRSEV24 - 3D MoRSE descriptor based on atomic van der Waals volume; 

MoRSEN24 - 3D MoRSE descriptor based on atomic number; MoRSEM24 - 3D MoRSE descriptor based on atomic mass; MoRSEC23  - 3D MoRSE descriptor 

based on atomic charge; RDFC4 - Radial distribution function (RDF) descriptor based on atomic charge; MoRSEC13 - 3D MoRSE descriptor based on atomic 

charge; DPSA3 - Difference in atomic charge weighted surface area; e DZ - Pogliani index; LabuteASA - Labute's Approximate Surface Area. 

 

Model Regression equations/selected descriptors RMSEE RMSEP Q2 r R2
pred F p 

MLR(-logPapp) 
-logPapp = (-5.507841.22990) + (0.097530.01308) ·grav - 

(8.336653.16406)·RDFC1 a   
0.288 0.388 0.715 0.970 0.715   

PLS(-logPapp) 
-logPapp = f(RDFC8, MoRSEC20, MoRSEP10, MoRSEV10, 

RDFU6, RDFP5, RDFE6, RDFV5) b 
0.127 0.238 0.701 0.946 0.893 - - 

SVM(-logPapp) -logPapp = f(grav, RDFC1) a 0.293 0.329 0.389 0.975 0.795 - - 

MLR(R) 
R = (712.537149.637) - (491.037113.501)·Qass - 

(6.7472.454)·RDFM14c 
15.128 15.089 0.601 0.900 0.801 9.480 <0.01018 

PLS(R) 
R = f (RDFC6, MoRSEV24, MoRSEN24, MoRSEM24, 

MoRSEC23, RDFC4, MoRSEC13, DPSA3) d 
10.908 20.652 0.042 0.914 0.627 - - 

SVM(R) R = f (DZ, LabuteASA) e 13.282 11.161 0.641 0.986 0.891 - - 
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