Twenty different late embryogenesis abundant proteins (LEAPs) accumulate in
desiccated Namonda serbicaleaves
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Introduction: Resurrection plant Aamonds serbica Panc. survives desiccation for a long period and fully recovers g8
metabolic functions already within one day upon watering. Besides osmotic stress, desiccation provokes the S

accelerated generation of reactive oxygen Species.
Aim: to obtain more insight into the mechanisms of desiccation tolerance in /7 sergica by TMI labelled comparative B8

quantitative proteomics of hydrated (HL) and desiccated leaves (DL). R
\_
Results:
Atter ge novotranscriptome analysis, 1834ab transcripts with 183003 unigenes were annotated with seven common databases. Proteomic analysis allowed for
the relative quantitication of ado ditterent protein groups, s14 with a statistically signiticant ditterence (7 <[l.0a, Fe>1.5) in abundance between HL and DL /
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isoforms and polyphenal oxidases (PPOs) were more ™
abundant in DL compared with HL. umonef@

GPX, glutathione peroxidase;, GST, glutathione S-transferase; MDAR,
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oxidoreductase

Our results imply an important role of LEAPs, PPOs, GLPs and Cu/Zn SUDs in protective mechanism against desiccation in £ serbica.
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) The metabolic overview obtained by MapMan? with additional pathways™ showing the abundance (heatmap) of the proteins associated with major metabolic pathways in DL compared with
LEA4 30 models of LEAP belonging to LEAZ and || HL. A Z-test was performed to identify proteins with a significantly different abundance (p < 0.09), and significant hits further included proteins showing a fold change (FC) 21.3 and <-1.3.
-/ groups predicted by PhyreZ 4] AAs, amino acids; Asc, ascorbate; CAT, catalase; GLPs, germin-like proteins; GSH, reduced glutathione; G8Ts, glutathione-S-transferases; PPOs, polyphenal oxidases; Prx, peroxiredoxins;
Peptide chain presented by rainbow color pattern: blue, N-terminus; red, C-terminus \ PTMs, post-translational modifications; ox-red, oxidoreductases; UPP, oxidative pentose phosphate pathway; TCA, tricarboxylic acid cycle; Trx, thioredoxins; Ub, ubiquitin; )
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lud LEAPs in £, serbica annotated by transcriptomics Warkflow Protein extracts of desiccated and hydrated £ serbica leaves were analysed with an LT0-
7c o Orkrow: - Urbitrap XL mass spectrometer coupled online with an Ultimate 3000 nano-HPLE. Peptides
DEtEPQEﬂt‘fFEE DhEﬂUl based extraction were eluted according to the method described in [3]. The instrument performed a full
39 47 14 - By W scan at high resolution (0000) on the Orbitrap, followed by Ma/Ma scans on the three
EASP-assisted digestion [ most intense ions with both GID and HCD fragmentation. Raw MS/M\ tiles were analysed
\pac ASME : using Proteome Discoverer |4 connected to a Mascot Search Engine server version 2.2.4
—_—— L abell i |CTMT 3 using a MudPIT protocol. Mean protein ratios (DL/HL) were calculated dividing the obtained
LEAZ aelling with b-plex reagents quantification value of each protein in treated samples to that of control samples.
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SMP: seed maturation proteins More abundant in DL unchanged
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