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Abstract 14 

The paper is aimed to determine the sources of organic matter (OM) and to check the 15 

capability of lipid compounds for distinguishing different color layers of a stratified 16 

hypersaline microbial mat. The relation of precursor lipids from microbial mat to 17 

hydrocarbons composition in fossil records was also evaluated. For that purpose, composition 18 

of glycolipids (GLs), phospholipids (PLs) and “neutral” lipids (NLs, including hydrocarbons, 19 

n-alkanols, sterols, hopanols, free fatty acids and wax esters) in 4 different color layers (A-D; 20 

depth intervals: up to 0.5 cm, 0.5-1.0 cm, 1.5-3.0 cm and 3.0-6.0 cm, respectively) of a 21 

stratified hypersaline mat from the Vermelha lagoon, Rio de Janeiro, Brazil was studied.  22 

Microscopic characterization revealed the presence of 16 cyanobacterial 23 

morphospecies, with predominance of Microcoleus chthonoplastes. The notable prevalence of 24 

saturated straight-chain fatty acids (FAs), n-16:0 and n-18:0 and their monounsaturated 25 
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counterparts, n-16:1 and n-18:1 in all three lipids fractions (GLs, PLs and NLs), associated 26 

with domination of n-C17 alkane and n-C17:1 alkene among the hydrocarbons confirmed the 27 

main imprint of cyanobacteria. The composition of studied lipid classes implies the 28 

contribution of sulfate-reducing bacteria such as Desulfomicrobium sp. strain, purple sulfur 29 

bacteria, as well as possible input of Geobacter spp. and Desulfovibrio spp., particularly in 30 

deeper layers.  31 

The notable decrease in total extractable lipids (TELs) yield from A to D layer 32 

indicates that lipid synthesis is much more intense by photosynthesizing cyanobacteria than 33 

by anaerobic microorganisms. The content of PLs was uniform and low (<5%) in all layers 34 

implying their extremely quick degradation. GLs, following by NLs were most abundant in 35 

all layers indicating the medium which is characterized by excess of the carbon source and the 36 

limited nitrogen source which regulates microorganisms’ growth. Upper layers, A (green) and 37 

B (reddish-brown) differ from the lower ones, C (dark brown greenish) and D (brown) 38 

according to the NLs/GLs ratio which is higher in former.  39 

The lipids composition reveals distinctions between individual layers within microbial 40 

mat well. The observed layers clearly differ according to amount of high molecular weight 41 

(C22-C31) n-alkanes and long-chain (C21-C30) n-alkanols, content of phytol, bishomohopanol, 42 

tetrahymanol, C27-C29 sterols, the stanol/stenol ratio in the neutral lipid fraction, as well as the 43 

content of branched (iso and anteiso) FAs and w9/w7 FA ratio in the GLs fraction. Mentioned 44 

parameters imply a greater contribution of sulfate-reducing and purple sulfur bacteria to layer 45 

B, higher impact of photosynthetic red algae in upper layers A and B, the elevated 46 

contribution of marine ciliate species, feeding on bacteria to layers B and C, as well as the 47 

increment of anoxygenic phototrophic and heterotrophic bacteria to layer D. The greatest 48 

capability for hydrocarbons synthesis is observed in layer B.  49 
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The composition of lipid classes in microbial mat showed a significant relationship 50 

with most important biomarkers’ fingerprints in the source rocks extracts and petroleums 51 

derived from carbonate hypersaline environments, including distribution of n-alkanes, high 52 

abundance of phytane and gammacerane, as well as distribution of C27-C29 regular steranes.  53 

 54 

Keywords: microbial mat, hypersaline environment, cyanobacteria, “neutral” lipids, 55 

glyclolipids, phospholipids. 56 

 57 

INTRODUCTION 58 

Lipid biomarkers have been used as powerful tool in the characterization of microbial 59 

community structure in microbialites (Kaur et al., 2011). For example, archaeal and bacterial 60 

lipid distributions and carbon isotopic composition have proved effective in the 61 

characterization of mat-building organisms in geothermal systems, and to microbial 62 

communities in cold seep carbonates.  63 

Microbial mats are laminated biofilms that grow mostly on submerged or moist 64 

surfaces. They usually develop in heat- and/or salinity-stressed habitats and the organisms are 65 

often spatially organized as a result of physicochemical gradients (Pierson et al., 1994; 66 

Rontani and Volkman, 2005; Sánchez et al., 2006). They generally are composed of few 67 

groups of microbes: cyanobacteria, colorless sulfur bacteria, purple sulfur bacteria and 68 

sulfate-reducing bacteria (Boudou et al., 1986; Dobson et al., 1988; van Gemerden, 1993). 69 

The lower diversity of species of these ecosystems provides qualitative differentiation of the 70 

sources of autochthonous (bacterial, algal and macrophytes) from allochthonous organic 71 

matter (OM) in sediments and the recognition of early diagenetic processes, which can be 72 

used for biogeochemical modeling studies (Grimalt et al., 1992). 73 
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In mats the activities of bacteria involve complex syntrophic communities in which 74 

photosynthesis in the upper mat is balanced by decomposition below (Grimalt et al., 1992). 75 

The result is a well-defined stratified benthic community with aerobic phototrophs 76 

(cyanobacteria) in the near surface, anoxygenic phototrophs below, followed by 77 

chemoorganotrophs that require neither oxygen nor light (Riding, 2000). Therefore, their 78 

individual layers tend to be populated by specific organisms (e.g. cyanobacteria, purple 79 

photosynthetic bacteria, sulfate-reducing bacteria) which allow that differences in the OM of 80 

various mat horizons can be assess in terms of the contributions from, and effects of these 81 

different microorganism (Boudou et al., 1986). 82 

Since modern microbial mats have been considered as analogues for ancient 83 

sediments, the bacterial activates have been studied by lipids, which are biomolecules that 84 

have greater preservation potential and therefore are more easily preserved over geological 85 

timescales (Riding, 2000; Plet et al., 2018). Lipid analysis have been used for identification of 86 

specific microbial group from a variety of localities and environmental settings (Navarrete et 87 

al., 2000; Bühring et al., 2009; Allen et al., 2010; Pagès et al., 2014; Plet et al., 2018). 88 

In lipid studies, three subdivisions are recognized: “neutral” lipids (NLs), glycolipids 89 

(GLs) and phospholipids (PLs) (Kates, 1972). The “neutral” lipids include aliphatic 90 

hydrocarbons, wax esters, free fatty acids, free sterols and free alcohols. The wax esters and 91 

free fatty acids (FAs) are common storage lipids in protozoa and eukaryotic algae (Piorreck 92 

and Pohl, 1984), whilst free sterols are ubiquitous in all organisms other than bacteria. GLs 93 

are sugar-containing lipids which are more polar than PLs and are abundant constituents of 94 

many gram-positive bacteria and some gram-negative bacteria. However, algae and higher 95 

plants also produce GLs (Lechevalier and Moss, 1977). On the other hand, PLs are membrane 96 

constituents of all organisms (Gillan and Sandstrom, 1985). 97 
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In view of these, we focus in the distribution and composition of NLs (free FAs, 98 

hydrocarbons, n-alkanols, sterols, hopanols, wax esters) and methyl esters of FAs obtained by 99 

methanolysis of GLs and PLs in microbial mat from the hypersaline Vermelha lagoon, Rio de 100 

Janeiro, Brazil, which could improve the understanding of biosignatures in the pre-salt 101 

petroleum reservoir.  102 

Although, numerous researches have been done studies of this lagoon with focus in 103 

geology, biology, taxonomy and geochemistry (Knoppers and Kjerfve, 1999; van Lith et al., 104 

2002; Silva E Silva et al., 2004, 2005; Silva and Carvalhal, 2005; Damazio and Silva E Silva, 105 

2006; Laut et al., 2017; Ramos et al., 2017; Rocha and Borgui, 2017), this paper represents 106 

probably one of the first reports about determination and quantification of the polar lipids 107 

composition, testing the capability of these biomolecules for distinguishing individual layers 108 

within microbial mat. Furthermore, it is well known that source rock kerogen, which is a 109 

heterogeneous, polymeric material formed from a biomass consisting of variable proportions 110 

of the remains of algae, higher plants and bacteria (Tissot and Welte, 1984) represents the 111 

main precursor of petroleum via the geothermal maturation. The contribution of algae and 112 

higher plants to sedimentary OM is well documented using microscopic techniques (e.g. 113 

maceral composition) and biomarkers patterns (n-alkanes, steroids, gymnosperm derived 114 

diterpenoids, angiosperm derived non-hopanoid triterpenoids, botryococcane, 115 

polymethylsqualanes; Peters et al., 2005), whereas evidence for a contribution from bacteria 116 

is usually referred to presence of hopanoids (Nytoft, 2011). Therefore, the second objective of 117 

the study was to connect the composition of precursor lipids in microbial mats with 118 

composition of ancient biomarkers commonly present in source rocks extracts and 119 

petroleums, which provides the essential data for the better understanding of the 120 

transformation of microbial OM during sedimentation processes and its contribution to fossil 121 

records.   122 
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 123 

MATERIAL AND METHODS 124 

Study Area 125 

The Vermelha lagoon (“Lagoa” Vermelha) is a shallow, hypersaline and carbonaceous 126 

coastal lagoon at southeast coast of the state of Rio de Janeiro, Brazil. It is approximately 4.5 127 

km long and 250 to 850 m wide, covering an area of 1.90 km
2
 with a mean water depth of 2.0 128 

m. The Vermelha lagoon is situated between two parallel dune systems, the younger 129 

(Holocenic) which separates it from the Atlantic Ocean and the older (Pleistocenic) which 130 

separates it from the much larger lagoon, Araruama lagoon (Fig. 1) (van Lith et al., 2002). 131 

There is no surface drainage in the lagoon environment, hence the water balance is 132 

controlled by weather conditions (dry or rainy season). The underground inflow of ground 133 

waters and sea conditions promote seepage, which can considerably increase the lagoon’s 134 

water volume. The water body is fragmented in almost five interconnected ponds with 135 

different dimensions arising from decades of salt explorations (Knoppers and Kjerfve, 1999). 136 

High salinity, sulfate reducing bacterial activity, indicated by the presence of sulfide 137 

and positive δ
34

S of sulfate, and biotic/abiotic sulfide oxidation are the main controls on 138 

dolomite formation in sediments (van Lith et al., 2002; Moreira et al., 2004). This special 139 

mineralogical composition of sediments is in contrast with the neighboring lagoons where 140 

detrital sedimentation predominates (Vasconcelos et al., 2006). 141 

Living microbial mats and stromatolites have beam described for the Vermelha lagoon 142 

in areas that are flooded periodically or intermittently, such as intertidal or adjacent supratidal 143 

environments like temporary pools (Silva E Silva et al., 2004; Silva E Silva and Carvalhal, 144 

2005). 145 

 146 

 147 
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Sampling 148 

Mat sample was collected in the intertidal region at a small central pond of the 149 

Vermelha lagoon which is bordering of saltpans (Fig. 2). The mat was classified in 150 

morphotype, according to its geometry, texture and color at the sampling site. The sample was 151 

collected using a metal spatula, placed into aluminum container and was refrigerated during 152 

transport. 153 

Sample was characterized regarding cohesion, inner lamination and color zonation by 154 

stereoscopic microscopy, and then cut in four intervals according to color, and freeze-dried 155 

for lipid analyses. For cyanobacterial analyses the mat was preserved in formaldehyde 156 

solution (4%). 157 

 158 

Cyanobacterial Identification 159 

Emphasis was put on the cyanobacterial taxa, which are key organisms and that 160 

dominate the biomass of mat (Dijkman et al., 2010). Slides from mat were observed 161 

microscopically (Axiovision Imager.A1 Zeiss), approximately ten, to ensure a good overall 162 

representation of resident morphotypes. The taxonomic identification was carried out in 163 

accordance with traditional morphological features. 164 

 165 

Lipid Analysis 166 

The layers of mat were extracted with a solvent mixture dichloromethane/methanol 167 

(2:1, v/v) using an Accelerator Solvent Extractor (ASE). The extracts were fractionated using 168 

benzenesulfonic acid bonding Solid Phase Extraction (SPE) columns (DSC-SCX; 500 mg, 3 169 

cm
3
). The fractions were eluted sequentially with dichloromethane, acetone and methanol to 170 

obtain neutral lipids, glycolipids and phospholipids fractions, respectively. The neutral lipids 171 

were fractionated using column chromatography (5 g silica-gel 60, 63-200 µm, dried at 110 172 
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ºC for 8 h) and five fractions were eluted with 10 cm
3
 n-hexane, 9 cm

3
 n-173 

hexane/dichloromethane, 10 cm
3
 dichloromethane, 10 cm

3
 dichloromethane/acetone and 15 174 

cm
3
 dichloromethane/methanol yielding, respectively: F1 containing hydrocarbons, F2 175 

containing ketones, F3 containing esters, F4 containing sterols and alcohols and F5 containing 176 

acidic compounds. Fractions were concentrated by rotary evaporation. After solvent 177 

evaporation, the residues of fractions F4 and F5 were taken up in 100 µl of BSTFA (Supelco) 178 

and silylated for 1 h at 50 ºC. 179 

Glycolipids and phospholipids fractions were saponified by heating process at 100 ºC 180 

in a water bath in the presence of 0.5 cm
3
 of methanol/toluene (1:1, v/v) and 0.5 cm

3
 of 181 

potassium hydroxide/methanol (0.2 mol/dm
3
). After cooling 1.5 cm

3
 of BF3/methanol was 182 

added and subsequently extraction was performed four times with n-hexane. The combined n-183 

hexane extracts were concentrated. 184 

All fractions were analyzed by gas chromatography-mass spectrometry (GC-MS). The 185 

GC-MS analyses were performed using an Agilent Technologies instrument (from USA) 186 

comprising a 7890A model gas chromatograph equipped with a 7693 auto sampler and 187 

coupled to a triple quadrupole 7000B Mass Spectrometer (MS). Helium was the carrier gas, in 188 

constant flow mode, at 1.2 cm
3
/min. A DB-1 column (100% dimethylpolysiloxane, 30 m-189 

long, with 0.25 mm inner diameter and 0.25 μm film thickness) was used. The column was 190 

heated from 40ºC (1 min, hold) to 140ºC at a rate of 20ºC/min and then to 280ºC at 2ºC/min. 191 

The final temperature of 280°C was maintained for an additional 30 minutes. The injector and 192 

transfer line temperatures were 280ºC. The MS was operated under the following conditions: 193 

the ion source temperature was 290ºC, the interface temperature was 300ºC and the 194 

quadrupole temperature was 150ºC. Electron impact ionization (70eV) was used and full scan 195 

spectra were obtained by scanning m/z 50-800 at 1 scan s
-1

. The compound assignment was 196 

performed by examination and comparison with literature mass spectra and NIST (National 197 
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Institute of Standards and Technology) library. The quantitative analyses were performed by 198 

comparison of peak areas of the compounds with those of internal standards: deuterated 199 

tetracosane for hydrocarbons analysis and 5α-androstan-3β-ol for alcohols, free fatty acids, 200 

wax esters and fatty acid methyl esters (FAMEs). 201 

 202 

RESULTS 203 

Mat Description and Cyanobacterial Diversity 204 

Polygonal mats were found at intertidal region of the Vermelha lagoon. External 205 

morphology showed traditional features like upturned crack margins producing saucer-shaped 206 

polygons, with approximately 50 cm of width and almost 6 cm of thickness. This mat had a 207 

flat dark pigmented green surface and internally was subdivided into 4 different colors layers. 208 

The top of mat showed a green layer (0.5 cm), followed by a reddish-brown layer (0.5-1.5 209 

cm), a dark brown greenish layer (1.5-3.0 cm) and finally a thicker bottom brown layer (3.0-210 

6.0 cm), which are assigned as A, B, C and D, respectively. Irregular and thin carbonate 211 

laminations were mainly observed in the brown layer (D). 212 

These color stratifications are linked to position of different microorganism guilds in 213 

response to physiological requirements (gradients of light, oxygen, redox potential, sulfide 214 

and pH) as described by (Visscher et al., 1992; Ward et al., 1998; Stolz, 2000). The 215 

positioning and morphology of microbial mat agreed with classifications proposed for others 216 

hypersaline environments (Horodyski and Bloeser, 1977; Silva E Silva et al., 2005). The 217 

occurrence of the same cyanobacterial mat in the neighbor lagoons of Araruama system was 218 

previously described (Silva E Silva et al., 2005; Damazio and Silva E Silva, 2006; Ramos et 219 

al., 2017; Rocha and Borgui, 2017). 220 

The cyanobacteria diversity comprises sixteen morphospecies: Aphanocapsa litoralis; 221 

Aphanothece marina; Aphanothece salina; Chroococcus membraninus; Chroococcus minor; 222 
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Chroococcus turgidus; Gloeocapsopsis crepidinum; Gomphosphaeria aponina; 223 

Gomphosphaeria salina; Johannesbaptita pellucida; Synechococcus salinarum; Jaaginema 224 

subtilissimun; Microcoleus chthonoplastes; Microcoleus tenerrimu; Phormidium okeni and 225 

Spirulina subsalsa.  226 

Some morphoespecies detected such as Microcoleus, Schizothrix, Spirulina, 227 

Aphanothece, Aphanocapsa, Chroococcus, Gloeocapsopsis, Synechococcus, 228 

Johannesbaptistia are known for their tolerance to desiccation and elevated salinities and 229 

have been reported from hypersaline mats, lagoons and inland evaporitic lakes (Abed and 230 

Garcia-Pichel, 2001; Jonkers et al., 2003; Richert et al., 2006; Abed et al., 2008, 2015; 231 

Ramos et al., 2017). Microcoleus chthonoplastes was the dominant cyanobacteria in this mat 232 

and other hypersaline mats, pointing out to its importance in the formation and stabilization of 233 

this mat morphology (Garcia-Pichel et al., 1996). 234 

 235 

Total Extractable Lipids 236 

 According to the literature, in shallow aquatic environments where sunlight is 237 

available, the lipids from uppermost layers of microbial mats represent inputs of aerobic 238 

photosynthesizing cyanobacteria and other oxygenic prototroph while the lipids from lowest 239 

layers represent different types of anaerobic bacteria. 240 

 The yields of total extractable lipids (TELs) were 14.73, 6.84, 3.88 and 1.14 mg/g
-
 241 

(dry mat) to layer A, B, C and D, respectively. Glycolipids (GLs) constituted the major 242 

compounds present in all layers, comprising from 55.40% of TELs in the layer A to 89.30% 243 

of TELs in the layer C. The proportion of neutral lipids (NLs) of the microbial mat analyzed 244 

was 41.01%, 28.67%, 8.84% and 17.37%
 
of TELs in the layers A, B, C and D, respectively. 245 

The content of phospholipids (PLs) was uniform and low (< 5%) in all layers (Fig. 3).  246 

 247 
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Neutral Lipids 248 

Compounds in the neutral lipids (NLs) fraction include hydrocarbons, free fatty acids 249 

(FFAs), sterols, hopanols, wax esters and alcohols (n-alkanols, n-alkenols and alcohols with 250 

branched isoprenoid chain) (Table 1).  251 

Free fatty acids (FFAs) dominated in all layers, with exception of layer D, which is 252 

characterized by uniform concentration of FFAs and hydrocarbons (Table 1). Content of 253 

hydrocarbons is two orders of magnitude higher in layer B than in other layers (Table 1), 254 

which may be attractive for consideration of biotechnological hydrocarbons producing from 255 

renewable sources, similar to those from Botryococcus braunii (Banerjee et al., 2002). 256 

Alcohols are more abundant than sterols and hopanols in layers A and D, whereas sterols 257 

prevail over alcohols and hopanols in layers B and C. Interestingly, contents of all three 258 

compound classes show the same trend versus depth/layers (Table 1). The hopanol 259 

concentration (C32 hopanol, with ββ-configuration) increases in layers B and C, which 260 

indicates bacterial community changes. The increase of hopanol concentration in layers B and 261 

C is associated with rise of sterols concentration (Table 1) that suggests higher contribution of 262 

eukaryotic organisms.  263 

Wax esters are identified in low amount and exhibit decreasing trend from top to 264 

bottom, being absent in the deepest layer D (Table 1). 265 

 266 

Hydrocarbons 267 

n-Alkanes ranged from n-C17 to n-C35, having maximum at n-C17, were detected in 268 

concentrations of 3.95, 44.09, 0.77 and 1.57 µg/g dry mat in layers from A to D, respectively. 269 

The abundance of high molecular weight (HMW) n-alkanes (>n-C21) was lowest at the 270 

surface (0.01 µg/g dry mat, layer A) and increased with depth to a maximum at 0.5-1.5 cm 271 
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(1.53 µg/g dry mat, layer B), but decreased at 1.5-3 cm (0.19 µg/g dry mat, layer C) and 272 

increase again to 0.77 µg/g dry mat (layer D), below 3 cm.  273 

Phytane (C20 regular isoprenoid) was detected in the range 0.27 - 17.10 µg/g dry mat, 274 

with the highest concentration in layer B and the lowest concentration in layer A. Another 275 

important isoprenoid biomarker, β-carotane was identified exclusively in layers A and B in 276 

relatively low concentration 0.82 and 0.54 µg/g dry mat, respectively. The absence of this 277 

biomarker in lower layers can be attributed to diagenetic alteration of the sensitive carotenoid 278 

skeleton and/or absence of its precursors.  279 

Pentacyclic terpenoid hydrocarbons with hopanoid skeleton, 22,29,30-trisnorhop-280 

17(21)-ene, 17β(H)-22,29,30-trisnorhopane, hop-17(21)-ene, and hop-22(29)-ene (diploptene) 281 

were present with total concentrations of 0.37, 0.28, 0.03 and 0.22 µg/g dry mat, in layers A 282 

to D, respectively (Fig. 4). These compounds are synthesized by a wide variety of aerobic (i.e. 283 

methanotrophs, heterotrophs and cyanobacteria) and anaerobic bacteria including strictly 284 

anaerobic bacteria capable of anaerobic ammonium oxidation (Rohmer et al., 1984; Volkman 285 

et al., 1986; Venkatesan, 1988; Ourisson and Rohmer, 1992; Summons et al., 1994; 286 

Sinninghe Damsté et al., 2004). 287 

 288 

Free Fatty Acids  289 

 Free fatty acids (FFAs) have been used in studies of microbial mats as biomarkers for 290 

different bacterial groups and they reflect the adaptation of bacteria to environmental stress 291 

(Grimalt et al., 1992; Abed et al., 2008; Scherf and Rullkötter, 2009). Distributions of FFAs 292 

vary as a function of their source and branched short-chain (C15 and C17) are considered as 293 

“typical bacterial” free fatty acids (Rütters et al., 2002). However, long-chain fatty acids (C20-294 

C30) are produced by many organisms; they may derive either directly from higher land plant 295 

material (such as cuticular waxes) or from eroded peats (Lehtonen and Ketola, 1993). In 296 
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addition, even-numbered long-chain fatty acids have also been discovered in some soil 297 

bacteria (Řezanka et al., 1991) and in Desulfotomaculum sp. (Řezanka et al., 1990).  298 

 FFAs are dominant NLs components showing, as total lipiids, notable decrease of 299 

concentration with depth (from 1234.73 µg/g dry mat in layer A to 4.72 µg/g dry mat in layer 300 

D; Table 1). In the layer A, FFAs are detected in range C12-C24; layer B is characterized 301 

exclusively by presence of short chain (C12-C19) FFAs, whereas in layers C and D, FFAs are 302 

observed in range from C12 to C30. The ratio of short- (C14-C20) vs. long-chain saturated FFAs 303 

(C21-C30) showed the following values: 4.16 (layer C), 32.28 (layer D), 83.81 (layer A), 304 

associated with the presence of short-chain FFAs up to C19 only in layer B, implies marked 305 

prevalence of the former, particularly in upper layers. Saturated straight-chain FFAs 16:0 and 306 

18:0 and their monounsaturated counterparts 16:1 and 18:1 dominated all layers and 307 

accounted for relative amounts from 60 to 75% of total fatty acids. The most dominant FFA 308 

was n-16:0 which made up ca. 31% of total fatty acids in layer A, 46% in the layer B, 31% in 309 

the layer C, and 52% in the layer D. The amount of the fatty acid n-18:0 ranged between 310 

4.13% and 18.81%, being the lowest in layer A and the highest in layer D, respectively.   311 

 312 

Normal, Isoprenoid and Pentacyclic Triterpenoid Alcohols, Steroids  313 

Straight chain fatty alcohols (C14-C30), exhibiting a strong even over odd 314 

predominance, which resulted in CPI values ranged from 0.01 (layers C and D) to 0.03 (layer 315 

A), are present in all layers, but greater concentration is observed in upper layers A and B 316 

(20.07 and 20.42 µg/g dry mat, respectively; Table 2). n-Alkanol maximum in layers A and D 317 

corresponds to n-18:0, whereas the most abundant homologues in layers B and C are n-28:0 318 

and n-24:0, respectively. Content of long chain (C21-C30) n-alkanols increases from layer A to 319 

layer C, showing the maximum in layer B. The ratio of short to long-chain n-alkanols 320 
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displayed notable decrease from layer A (1.94) to deeper layers where comparable values 321 

(0.76-0.90) are observed (Table 2).  322 

Branched alcohols with isoprenoid skeleton, phytol and isophytol are present in all 323 

layers, with concentrations varying from 0.01 to 2.22 µg/g dry mat and from 0.03 to 2.53 μg/g 324 

dry mat. The content of both compounds is the lowest in layer D and the highest layer B 325 

(Table 2), which has the highest amount of phytane.  326 

The C27-C29 sterols, exhibiting the prevalence of C29 homologue, are present in all 327 

samples, with the highest concentration (21.27 and 26.07 μg/g dry mat) in layers B and C 328 

(Table 2). These sterols, however, are not specific to cyanobacteria and their occurrence in the 329 

mat layers could be contributions from other eukaryotic aquatic microorganisms and higher 330 

plants. Unsaturated stenols, with maximum at C29 24-ethylcholest-5-en-3β-ol, prevail over 331 

saturated stanols in the cyanobacterial mat layer A, whereas in deeper layers, B and C the 332 

opposite trend is observed, with maximum at 5α(H)-24-ethylcholestan-3β-ol (Table 2).  333 

Pentacyclic triterpenoid alcohols, bishomohopanol (0.12-6.06 μg/g dry mat) and 334 

tetrahymanol (0.02-2.72 μg/g dry mat) are observed in all layers (Table 2). The concentrations 335 

of both, bishomohopanol and tetrahymanol are higher in layers B and C than in layer A, and 336 

particularly layer D. Bishomohopanol is probably derived from microbial degradation of the 337 

bacteriohopanetetrols (BHPs) of cyanobacteria. Tetrahymanol has been found in sediments 338 

from a variety of depositional environments, as well as in bacterial/algal mats (Venkatesan, 339 

1989), but higher concentration of this compound usually typifies the interface between oxic 340 

and anoxic zones in stratified water columns (Sinninghe Damsté et al., 1995).  341 

 342 

Glycolipids and Phospholipids 343 

The bound fatty acids (FAs) from saponification of the glycolipids (GLs) and 344 

phospholipids (PLs) fractions are typically inferred to derive from the hydrolysis of 1,2-345 
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diacylglycoglycerolipids and 1,2-diacylglycerophospholipids respectively. FAMEs are 346 

derived from alkaline methanolysis of intact polar lipids of the PLs and GLs fractions. Both 347 

individual FAMEs and their characteristic distributions can be useful biomarkers for diverse 348 

groups of organisms in environmental samples (Allen et al., 2010). 349 

Mass chromatograms (m/z 74) of methanolysis products of GLs and PLs fractions are 350 

presented in Figures 5 and 6, respectively. Mass chromatograms indicate that methanolysis 351 

products of GLs and PLs fractions obtained from the same mat are not similar in composition. 352 

FAMEs from GLs fractions showed presence of saturated, branched and monounsaturated 353 

compounds (Fig. 5), while FAMEs from PLs fractions almost all comprise n-16:0 and n-18:0 354 

(Fig. 6).  355 

Normal FAMEs were the most abundant in GLs fractions of all layers, with 356 

concentrations from 47.19 μg/g dry mat (layer B) to 72.30 μg/g dry mat (layer C). They are 357 

identified in range from n-13:0 to n-18:0, with n-17:0 being absent. The branched acids are 358 

represented by C14-C17 compounds, showing maximum at iso-15:0 in all samples, and having 359 

the highest concentration in layers B and D (Fig. 5; Table 3). The presence of 360 

monounsaturated FAMEs, n-16:1, n-18:1 and n-19:1 is also noticed within the GLs fraction of 361 

all layers. The concentration of monounsaturated FAMEs decreases with depth (Table 3).  362 

 363 

DISCUSSION 364 

The Capability of Polar Lipids Composition for Distinguishing Individual Layers within 365 

Microbial Mat 366 

Total Extractable Lipids 367 

Notable decrease in TELs content from A to D layer indicates that lipid synthesis is 368 

much more intense by aerobic than by anaerobic microorganisms. The prevalence of GLs and 369 

NLs in all layers (Fig. 3) can be indicative for the medium which is characterized by excess of 370 
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the carbon source, whereas the nitrogen source limits microorganisms’ growth (Alvarez and 371 

Steinbüchel, 2002; Alvarez, 2003). High amounts of GLs indicate a high contribution of 372 

photosynthetic organisms to microbial mat. Also, the microbial community of natural 373 

environments is frequently exposed to many fluctuating conditions, as variation of 374 

temperature. In these cases, the microorganisms may accumulate GLs as energy source, 375 

allowing their survival in these variable conditions. Upper layers of microbial mats differ 376 

from the lower ones according to NLs/GLs ratio which is higher in former (Fig. 3), indicating 377 

more intense synthesis/accumulation of NLs by aerobic than by anaerobic microorganisms.  378 

 379 

Neutral Lipids 380 

The prevalence of n-C17 n-alkane associated with prominent n-C17:1 alkene is typical 381 

for cyanobacteria (Thiel et al., 1997), and was also previously reported in hypersaline, hot 382 

springs, and freshwater microbial mats (Grimalt et al., 1992; Fourcans et al., 2004; Rontani 383 

and Volkman, 2005; Scherf and Rullkötter, 2009). The result is in accordance with 384 

domination of Microcoleus taxon in studied mat. Despite the prevalence of n-heptadecane in 385 

all layers, they can be distinguish by Carbon Preference Index (CPI), reflecting the ratio of 386 

odd/even n-alkanes, and the concentration of high molecular weight (HMW) n-alkanes (C22-387 

C31). CPI showed values of 1.26, 5.21, 1.99 and 3.61 in layers A, B, C and D, respectively. 388 

The highest content of HMW n-alkanes, associated with the highest amount of long-chain 389 

(C21-C30) n-alkanols in layer B (Table 2) can be attributed to greater contribution of Spirulina 390 

(Franco et al., 2016), which presence is confirmed in the mat, as well as to sulfate-reducing 391 

and heterotrophic bacteria. The highest impact of sulfate-reducing bacteria to layer B is 392 

further supported by the highest ratio of hop-17(21)-ene and hop-22(29)-ene (Wolff et al., 393 

1992) exhibiting the value of 1.42, 1.84, 1.22 and 0.92 for layer A, B, C and D, respectively. 394 

The increase in content of HMW n-alkanes in the deepest layer D may be indicative for 395 
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anoxygenic phototrophic and heterotrophic bacteria, and it is consistent with rise of content of 396 

C27 hopanoids, particularly 17β(H)-22,29,30-trisnorhopane (Fig. 4).  397 

The greater content of phytol in upper layers A and B (Table 2) is consistent with its 398 

origin from the phytyl side chain of chlorophyll a in phototrophic organisms, such as 399 

phytoplankton and cyanobacteria (Rontani and Volkman, 2003). The highest concentration of 400 

both phytol and phytane in layer B may be indicative for the impact of purple sulfur bacteria, 401 

containing the phytyl moiety in the bacteriochlorophyll a and b (Brooks et al., 1969; Powell 402 

and McKirdy, 1973), which presence can caused the reddish color of this layer.   403 

Concerning the distribution of FFAs difference is observed in content of long-chain 404 

homologues which is much higher in lower layers C and D. The CPI, calculated based on the 405 

FFAs distribution revealed markedly higher contribution of even than odd FFAs homologues 406 

and increased with depth, however much slightly than CPI calculated from n-alkanes, 407 

displaying values from 0.17 (layer A) to 0.26 (layer D). The notable prevalence of C16 and C18 408 

saturated FFAs, associated with their monounsaturated counterparts 16:1 and 18:1 confirmed 409 

the dominance of cyanobacterial taxa (Abed et al., 2015). Predominance of C16, C18 and C19 410 

compounds among short-chain FFAs (C12-C20) was also reported in microalgae, zooplankton 411 

and other bacteria (Gutiérrez et al., 2012), which presence is expected in studied area. 412 

The prevalence of C29 sterols in the C27-C29 sterol distribution observed in all layers 413 

(Table 2), is usually attributed to impact of higher plants or brown and green algae. However 414 

since the contribution of higher plants to studied math is negligible, the domination of C29 415 

sterols can be related to the impact of brown and green algae. C27-C29 sterol distribution 416 

showed decreasing trend in order C29>C27>C28 in the upper layers A and B and C29>C28>C27 417 

in the lower layers C and D (Table 2). The higher content of C27 homologue in layers A and B 418 

can be attributed to higher contribution of photosynthetic red algae to the upper layers.  419 
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The layers also distinguish according to abundance of unsaturated stenols, and 420 

saturated stanols. The higher proportion of stanols in layers B and C compared to layers A 421 

and D (layer D contains very low concentration of steroids due to the low impact of 422 

photosynthetic eukaryotic algae) can be evidence of preferential degradation of stenols which 423 

are less resistant to degradation than stanols and/or microbially-mediated stenol to stanol 424 

conversion (Boudou et al., 1987). The latter assumption is consistent with higher abundance 425 

of 5α(H)-cholestan-3-one in the layers B and C than in layer A (Table 2), which is known 426 

intermediary in the stenol → stanol conversion in algal mats. More intense microbial activity 427 

in layers B and C is consistent with considerably higher amount of hopanols (Table 1) in these 428 

two layers.  429 

The highest content of bishomohopanol in layer B is consistent with higher impact of 430 

sulfate reducing bacteria, presumed also based on the hop-17(21)-ene/hop-22(29)-ene ratio 431 

and proportion of HMW n-alkanes. Moreover, some works have been showed that 432 

Planctomycetes, Geobacter spp. and Desulfovibrio spp. are capable for hopanoid production 433 

(Sinninghe Damsté et al., 2004; Fischer et al., 2005; Härtner et al., 2005; Blumenberg et al., 434 

2006, 2012). Therefore, the contribution from anaerobic bacteria in layer B and particularly 435 

layer C can also not be excluded. The highest content of tetrahymanol in layers B and C can 436 

be attributed to marine ciliate species, most of which are scuticociliates, a widespread group 437 

of protozoa that feed mainly on bacteria (Harvey and McManus, 1991), and usually occur at 438 

the interface between oxic and anoxic zones in stratified water columns (Sinninghe Damsté et 439 

al., 1995). 440 

 441 

Glycolipids and Phospholipids  442 

Hexadecanoic acid ME was the most prominent compound in GLs fractions of all 443 

samples, followed by n-18:0 ME in deeper layers B-D, whereas in layer A higher 444 
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concentration of n-15:0 and n-14:0 ME than n-18:0 ME is observed (Table 3). This result is 445 

consistent with prevalence of n-16:0 free FA in all layers and the lowest abundance of n-18:0 446 

free FA in neutral lipids fraction of layer A.   447 

Branched (anteiso- and iso-) and monounsaturated FAMEs were detected in GLs 448 

fractions of all layers with predominance of branched FAMEs in the layers B-D and 449 

monounsaturated FAMEs in the layer A (Fig. 5; Table 3). Branched FAs are commonly 450 

considered to be of bacterial origin, e.g. from sulfate-reducing bacteria (some of them could 451 

also be abundant in the oxic zones of mats; Baumgartner et al., 2006) or sulfur-reducing 452 

bacteria (Kaneda, 1991; Rütters et al., 2002). In contrast, purple sulfur bacteria 453 

(Chromatiaceae) only biosynthesize straight-chain even-carbon-numbered FAs such as n-454 

16:1, n-16:0, n-18:1 and n-18:0 (Imhoff and Bias-lmhoff, 1995). Abundant iso-15:0 FA also 455 

can be as an indication of a gram-positive community (Lechevalier, 1988; Navarrete et al., 456 

2000; Romano et al., 2008; Bühring et al., 2009), which are abundant in hypersaline 457 

environments (Caton et al., 2004; Ghozlan et al., 2006). Therefore, the obtained results 458 

suggest higher contribution of sulfate-reducing and purple sulfur bacteria to layer B, which 459 

has also been supposed based on the highest content of HMW n-alkanes, hopanol and phytol 460 

(Table 2), as well as the highest hop-17(21)-ene/hop-22(29)-ene ratio in this layer.   461 

The greatest concentrations of monounsaturated FAMEs, n-16:1 and n-18:1 in layers 462 

A and B are in agreement with contribution of Microcoleus sp. (Rütters et al., 2002; Bühring 463 

et al., 2009), which was the dominant cyanobacterium in studied mat. The presence of w9 464 

monoenoic FAME could be related to aerobic desaturase pathway common to all cells, 465 

whereas the w7 FAMEs (Table 3) could be indicative for anaerobic desaturase pathway, 466 

which is often a prokaryotic biochemical pathway (Edlund et al., 1985). Higher w9/w7 ratio 467 

in layers B and C than in layer A (Table 3) is consistent with higher concentration of 468 

eukaryotic sterols in these two layers (Table 2).  469 
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The distribution of FAMEs in PLs fractions of all samples is very scarce (Fig. 6). This 470 

could be explained by the fact that phospholipids are quickly degraded, ranging from minutes 471 

to a few hours after cell death (Sato and Murata, 1988), which is also generally reflected 472 

through the uniform low contribution of PLs fraction (c.a. 5 %; Fig. 3) to all layers. 473 

According to (Bowman et al., 1995; Hanson and Hanson, 1996; Boschker et al., 1998) 474 

the signature of phospholipid fatty acids can be used to distinguish type I mesophilic 475 

methane-oxidizing bacteria, which predominantly contain a series of n-16:1 mono-unsaturated 476 

PLFAs, from type II, which contain n-18:1 mono-unsaturated PLFAs. However, these 477 

compounds were not detected. Therefore, the predominance of n-16:0 PLFA over n-18:0 478 

PLFA (Fig. 6), except layer C, could be related to contribution of the sulfate-reducing bacteria 479 

such as Desulfomicrobium sp. strain. 480 

 481 

The Relation of Precursor Lipids from Microbial Mat to Geologic Biosignatures 482 

n-Alkanes and Isoprenoid Aliphatic Alkanes 483 

The prevalence of short-chain n-alkanes over long once in source rock extracts and 484 

petroleums, usually expressed via TAR ratio, TAR = (n-C27 + n-C29 + n-C31)/(n-C15 + n-C17 + 485 

n-C19) (Bourbonniere and Meyers, 1996) is related to predominant aquatic origin of precursor 486 

OM and/or high maturity, whereas elevated content of long-chain homologues (C25-C33), 487 

particularly the odd once, signifies the contribution of epicuticular waxes from land plants. As 488 

shown here, cyanobacteria synthesizes a large amount of C17 n-alkane and C17 1-n-alkene 489 

which hydrogenation during burial would result in formation of C17 n-alkane. Furthermore, 490 

distributions of free- and fatty acids bounded in glyco- and phospholipids of microbial mat are 491 

characterized by sharp prevalence of C16 and C18 homologues (Figs. 5, 6; Table 3), whereas 492 

C16 and C18 are the most abundant n-alkanols in all layers with exception of layer B (Table 2). 493 

Mentioned lipids with normal hydrocarbon skeleton produce n-alkanes during burial via 494 
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defunctionalization. Fatty acids undergo decarboxylation which results in formation of n-495 

alkanes having one C-atom less; in such case C16 and C18 fatty acids will produce C15 and C17 496 

n-alkanes. Other mechanism, favored in reducing environment involves reduction of FA to n-497 

alcohol, dehydration to n-alkene and further hydrogenation to n-alkane, having the same 498 

number of carbon atoms as initial fatty acid. In such case C16 and C18 fatty acids will form C16 499 

and C18 n-alkanes. The fate of n-alkanols in sedimentary records depends on redox settings. In 500 

oxygenated environment they undergo oxidation to fatty acids which further decarboxylation 501 

results in formation of n-alkane with one C-atom less, whereas in reducing environment n-502 

alkanols dehydrated to n-alkene and further hydrogenated into n-alkane, without change in 503 

carbon atom number. Independently, of redox settings, the results obtained in this study reveal 504 

that source rocks extracts and petroleums derived from microbial mat should dominate by 505 

short-chain n-alkanes, with notable prevalence of C15-C18 homologues. Furthermore, 506 

distribution of C15-C18 homologues along with some other biomarker parameters (e.g. 507 

pristane/phytane ratio, distribution of C31-C35 homohopanes, and abundance of gammacerane 508 

and β-carotane, see later) can be indicative for redox settings. Namely, prevalence of C15 and 509 

C17 over C16 and C18 n-alkanes can be indicative for rather oxidizing environment, whereas 510 

prevalence of C16 and C18 may imply reducing settings. Additionally, distribution of mid- and 511 

long-chain n-alkanes (C22-C30) in ancient samples can contribute to determination of redox 512 

depositional settings. Namely, since C22-C30 n-alkanols are also present in studied mat, the 513 

prevalence of even n-alkane homologues in the range C22-C30 in sedimentary OM would 514 

signify reducing environment, whereas the prevalence of odd n-alkanes would typify 515 

oxidizing settings. The result is concordance with literature data that petroleum derived from 516 

carbonate source rocks in reducing environment are characterized by prevalence of even n-517 

alkane homologues in range C22-C32, resulting in CPI<1 (Peters et al., 2005 and references 518 

therein).   519 
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As it has been already mentioned, the elevated content of long-chain, particularly odd 520 

n-alkane homologues is usually related to impact of higher plants or certain non-marine algae 521 

(e.g. Botryococcus braunii rice A) which may contribute to the C27-C31 n-alkanes (Moldowan 522 

et al., 1985; Derenne et al., 1988). However, since the highest content of HMW n-alkanes 523 

(C22–C31) was observed in layer B, which is associated with greater contribution of Spirulina 524 

(Franco et al., 2016), and sulfate-reducing- and heterotrophic bacteria, the elevated content of 525 

mid- and long-chain n-alkanes in source rocks extracts and petroleums derived from 526 

carbonate sources may be indicative to mentioned bacterial sources. Furthermore, the increase 527 

in content of HMW n-alkanes in the deepest layer D may be indicative for anoxygenic 528 

phototrophic and heterotrophic bacteria.   529 

Regular isoprenoids pristane (Pr) and phytane (Ph) are abundant components of source 530 

rock extracts and petroleums. The main precursor of both components is the phytyl side chain 531 

of chlorophyll a in phototrophic organisms and bacteriochlorophyll a and b in purple sulfur 532 

bacteria (e.g. Brooks et al., 1969; Powell and McKirdy, 1973). The formation of phytane is 533 

favored in reducing conditions, whereas formation of pristane is related to oxic environment. 534 

Although phytol was present in all layers of mat, only phytane was detected in studied 535 

samples, and no pristane was observed. The obtained result is consistent with data from 536 

geological records, that high Pr/Ph (>3.0) indicates terrigenous organic matter input under 537 

oxic conditions, while low values (<0.8) typify anoxic, commonly hypersaline or carbonate 538 

environments (Peters et al., 2005).  539 

The presence of β-carotane in source rocks extracts and crude oils was well 540 

documented (Philp et al., 1992; Koopmans et al., 1997; Chen et al., 2003; Hopmans et al., 541 

2005). However, high concentrations of this biomarker are typical for anoxic lacustrine, or 542 

highly restricted marine environments (Jiang and Fowler, 1986; Fu et al., 1990). The 543 

identification of β-carotane in layers A and B is consistent with production of its precursors 544 
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by cyanobacteria in arid and hypersaline environments (Jiang and Fowler, 1986; Koopmans et 545 

al., 1997), whereas absence of β-carotane in layers C and D unambiguously confirmed fast 546 

degradation of the carotenoid skeleton by heterotrophic bacteria, and its synthesis by aerobic 547 

organisms.  548 

 549 

Pentacyclic Triterpenoids (Hopanes and Gammacerane) 550 

22,29,30-Trisnorhop-17(21)-ene, 17β(H)-22,29,30-trisnorhopane, hop-17(21)-ene, 551 

hop-22(29)-ene (diploptene) and bishomohopanol, detected in studied samples, are precursors 552 

of C27, C30 and C32 hopanes, widespread in source rock extracts and petroleums. Hopanes 553 

with 30 carbon atoms generally dominated in ancient samples, and such pattern is also evident 554 

in math’ precursor OM (Fig. 4). The scarce distribution of hopanoids in microbial mat in 555 

comparison with ancient sedimentary OM, where they are usually present in the C27-C35 range 556 

is related to the fact that hopanoids are generally bounded into macromolecules via a larger 557 

number of binding sites (particularly numerous hydroxyl groups) than other biomarkers 558 

(Hofmann et al., 1991; Richnow et al., 1991; Rohmer, 1993). This may lead to their 559 

preferential incorporation into macromolecules, during very early diagenesis, and their 560 

retention in bound fractions up to cracking in the oil window stage (Hofmann et al., 1991; 561 

Bowden et al., 2006). On the other hand, C30 hop-17(21)-ene, C30 hop-22(29)-ene, C27 562 

22,29,30-trisnorhop-17(21)-ene and C27 17β(H)-22,29,30-trisnorhopane do not possess 563 

hydroxyl groups and consequently remained free or have been weakly adsorbed on the OM 564 

and therefore has been easily detected in microbial mat. The conformation of our assumption 565 

is the presence of full series of hopanoids typical for geological records observed in liquid 566 

products obtained by hydropyrolysis of studied microbial mat (Franco et al., 2016). 567 

Tetrahymanol, detected in all layers (Table 2) is the main precursor of gammacerane 568 

in source rocks and petroleums. Although present at least in trace amounts in most source 569 
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rock extracts and petroleums, large amount of gammacerane is generally related to highly 570 

reducing, hypersaline conditions during deposition of the OM (Moldowan et al., 1985; Fu et 571 

al., 1986), which coincides with our results, particularly from layers B and C. Moreover, high 572 

content of gammacerane in carbonate derived source rocks and petroleums is usually 573 

associated with elevated content of phytane (e.g. low pristane/phytane ratio), and precursors 574 

of both compounds (tetrahymanol and phytol; Table 2), as well as phytane were identified in 575 

all layers, whereas pristane was absent.  576 

 577 

Steroids 578 

The distribution of 5α(H)14α(H)17α(H)20(R) C27-C29 regular steranes is routine 579 

parameter used in the evaluation of the sedimentary OM type. It is based on the observation 580 

that C27 steranes originate dominantly from marine plankton and red algae (Huang and 581 

Meinschein, 1979; Schwark and Empt, 2006), C28 steranes from yeast, fungi, plankton and 582 

algae (Volkman, 2003), and C29 homologues from higher plants (Volkman, 1986), and brown 583 

and green algae (Volkman, 2003). Marine environments are generally characterized by 584 

prevalence of C27 or C29 sterane homologues, which is in agreement with distribution of 585 

precursor C27-C29 sterols observed in studied mat, since conversion of sterols into steranes 586 

during geothermal maturation does not change a total number of carbon atoms in the 587 

molecule.   588 

 589 

CONCLUSIONS 590 

The studied hypersaline mat has a flat dark pigmented green surface and internally 591 

was subdivided into 4 different colors layers (A-D). The top of mat showed a green layer A 592 

(0.5 cm), followed by a reddish brown layer B (0.5-1.5 cm), a dark brown greenish (1.5-3.0 593 

cm) layer C, and a thicker bottom brown layer D (3.0-6.0 cm). Cyanobacterial taxa dominate 594 

the biomass with a diversity of the 16 morphospecies in which Microcoleus chthonoplastes 595 
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prevailed. Based on the studied lipid classes contribution of sulfate-reducing bacteria such as 596 

Desulfomicrobium sp. strain, purple sulfur bacteria, as well as possible input of Geobacter 597 

spp. and Desulfovibrio spp., particularly in deeper layers, is also established.  598 

Notable decrease in total extractable lipids yield from A to D layer indicates that lipid 599 

synthesis is much more intense by photosynthesizing cyanobacteria than by anaerobic 600 

microorganisms. The content of PLs was uniform and very low (<5%) in all layers confirming 601 

extremely quick degradation (from minutes to a few hours) after cell death. Therefore, layers 602 

can be more effectively distinguishing based on composition of NLs and GLs than 603 

composition of PLs. GLs that are accumulated as energy source, following by NLs were most 604 

abundant in all layers indicating the medium which is characterized by excess of the carbon 605 

source and limitation of microorganisms’ growth by the nitrogen source.  606 

The lipids composition showed adequate capability for distinguishing individual layers 607 

within microbial mat. The NLs/GLs ratio decreases from layer A to D. Among the studied 608 

lipid classes, the observed layers mostly differ according to amount of high molecular weight 609 

n-alkanes and long-chain (C21-C30) n-alkanols, content of phytol, hopanol and sterols, the 610 

stanol/stenol ratio, content of branched FAs in the GLs fraction, as well as w9/w7 FA ratio of 611 

the GLs fraction. All mentioned parameters generally increase with depth, being commonly 612 

the highest in layer B and implying a greater contribution of sulfate reducing- and purple 613 

sulfur bacteria to this layer. Furthermore, based on the distribution of C27-C29 sterols higher 614 

impact of photosynthetic red algae is suggested in upper layers A and B, whereas the highest 615 

content of tetrahymanol in layers B and C indicates elevated contribution of marine ciliate 616 

species, feeding on bacteria, to these two layers. The greatest capability for hydrocarbons 617 

synthesis is observed in layer B. Our results also imply microbially-mediated lipid diagenetic 618 

alteration, particularly in layers B and C.  619 
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Comparison the composition of lipid classes in microbial mat and distributions of 620 

biomarkers in ancient source rocks extracts and petroleums implies that precursor lipids 621 

provide an essential data for the understanding of the transformation microbial OM during 622 

sedimentation processes and its contribution to fossil records. This is particularly related to 623 

distribution of n-alkanes, high abundance of phytane and gammacerane, as well as 624 

distribution of C27-C29 regular steranes in source rocks and petroleums derived from carbonate 625 

hypersaline environments. The solely limitation in the direct connection of lipid composition 626 

of microbial mats and fossil biomarkers concerns distribution of hopanes due to the fact that 627 

hopanoids are preferentially bounded into macromolecules, during very early diagenesis, and 628 

their more intense releasing occurs by cracking yet in the oil window stage. 629 
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FIGURE CAPTIONS 931 

 932 

Figure 1. Map showing the location of Vermelha lagoon (“Lagoa Vermelha”) on the 933 

southeastern coast of the state of Rio de Janeiro, Brazil. 934 

 935 

Figure 2. Polygonal mat from the Vermelha lagoon. (A) Detail map of the Vermelha lagoon 936 

showing the E7 sampling site; (B) Microbial mats at the E7 site; (C-D) Transversal cut 937 

showing inner laminations and color zonation. 938 

 939 

Figure 3. Total extractable lipids (TELs) of microbial mat layers.  940 

NLs – neutral lipids, GLs – glycolipids, PLs – phospholipids. 941 

 942 

Figure 4. Partial mass chromatograms of m/z 191 showing hopanoids distribution.  943 

1 – C27 22,29,30-trisnorhop-17(21)-ene; 2 – C27 17β(H)-22,29,30-trisnorhopane;  944 

3 – C30 hop-17(21)-ene; 4 – C30 hop-22(29)-ene (diploptene). 945 

 946 

Figure 5. Partial mass chromatograms of m/z 74 showing FAMEs profiles from GLs fractions. 947 

Fatty acids are denoted as x:y, with x indicating number of carbon atoms and y giving the 948 

number of double bonds; structural isomers are denoted by prefixes: n = normal, i = iso,  949 

ai = anteiso, br = branched; additional methyl groups are noted with their position. A - D: 950 

layers from microbial mat sample. 951 

 952 

Figure 6. Partial mass chromatograms of m/z 74 showing FAMEs profiles from PLs fractions. 953 

Fatty acids are denoted as x:y, with x indicating number of carbon atoms and y giving the 954 

number of double bonds. A - D: layers from microbial mat sample. 955 
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 1054 
Table 1. Concentrations (µg/g dry weight mat) of the isolated classes from neutral lipids 1055 

fraction (quantification from GC-MS) in layers A-D   1056 

 1057 

Layer  

(Depth, cm) 

Lipid component
*
 (µg/g dry mat) 

Hydrocarbons FFAs Alcohols Sterols Hopanols Wax esters 

A (0.5) 7.45 1234.73 22.08 11.18 1.75 1.30 

B (0.5 - 1.5) 144.41 229.24 25.17 26.06 6.06 1.31 

C (1.5 - 3) 2.72 32.24 15.06 21.26 3.66 0.41 

D (3.0 - 6.0) 4.77 4.72 0.91 0.85 0.12 N.D. 

* – Obtained by summing concentrations of individual components; FFAs – Free fatty acids;  1058 

N.D. – Not detected.  1059 
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 1090 
Table 2. Compositions of straight- and isoprenoid chain alcohols, steroids and triterpenoid 1091 

alcohols of microbial mat  1092 

 1093 

Straight chain alcohols (μg/g dry mat) A B C D 

n-14:0 0.55 0.47 0.19 0.01 

n-15:0 1.58 0.70 0.24 0.01 

n-16:0 2.39 1.75 0.83 0.06 

n-17:0  1.00 0.70 0.41 0.01 

n-18:1w9 0.61 0.28 0.38 0.02 

n-18:0 2.86 2.21 1.68 0.15 

n-20:0 2.40 2.30 1.40 0.14 

n-21:0 0.13 N.D. N.D. N.D. 

n-22:0 1.75 1.90 1.22 0.09 

n-23:0 0.12 0.14 0.04 N.D. 

n-24:0 0.93 2.29 2.70 0.12 

n-26:0 0.80 2.17 1.15 0.06 

n-28:0 1.68 2.51 0.79 0.11 

n-30:0 1.20 1.61 0.90 0.07 

Total straight chain alcohols (μg/g dry mat) 20.07 20.42 12.33 0.87 

n-Alkanol maximum n-18:0 n-28:0 n-24:0 n-18:0 

Short-chain/long-chain n-alkanols 1.94 0.90 0.76 0.89 

Branched chain (isoprenoid) alcohols  

(μg/g dry mat) 
A B C D 

Isophytol 1.03 2.53 2.15 0.03 

Phytol 0.98 2.22 0.58 0.01 

Total branched chain alcohols (μg/g dry mat) 2.01 4.75 2.73 0.04 

Steroids (µg/g dry mat) A B C D 

5β(H)-Cholestan-3β-ol 0.13 0.61 0.16 N.D. 

5β(H)-Cholestan-3α-ol 0.90 3.85 3.19 0.07 

5α(H)-Cholestan-3-one 0.95 3.57 5.54 N.D. 

Cholest-5-en-3β-ol 2.00 1.73 0.23 0.03 

5α(H)-Cholestan-3β-ol 0.34 2.09 0.55 0.01 

5β(H)-24-Methylcholestan-3α-ol 0.45 0.88 1.18 N.D. 

24-Methylcholest-5-en-3β-ol 1.12 2.55 1.48 0.06 

5α(H)-24-Methylcholestan-3β-ol 0.95 2.79 2.72 0.07 

24-Ethylcholest-5,22(E)-dien-3β-ol 0.99 1.36 0.28 N.D. 

Cycloartenol 0.55 1.98 0.13 N.D. 

24-Ethylcholest-5-en-3β-ol 2.52 3.56 4.32 0.52 

5α(H)-24-Ethylcholestan-3β-ol 1.22 4.67 7.03 0.09 
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Total steroids (µg/g dry mat) 12.12 29.64 26.81 0.85 

Total sterols (µg/g dry mat) 11.17 26.07 21.27 0.85 

C27 Sterols (%) 31.73 34.37 19.54 12.94 

C28 Sterols (%) 23.73 25.82 25.45 15.29 

C29 Sterols (%) 44.54 39.81 55.01 71.76 

ΣC27-C29 unsaturated sterols (%) 6.63 9.20 6.31 0.61 

ΣC27-C29 saturated stanols (%) 3.99 14.89 14.83 0.24 

Triterpenoid alcohols (μg/g dry mat) A B C D 

Bishomohopanol 1.75 6.06 3.66 0.12 

Tetrahymanol 0.91 2.06 2.72 0.02 

Total triterpenoid alcohols (µg/g dry mat) 2.66 8.12 6.38 0.14 

N.D. – Not detected. 1094 
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 1129 
Table 3. FAMEs composition from glycoplipid fractions of microbial mat  1130 

 1131 

FAMEs from GLs (µg/g dry weight mat) 

Normal saturated A B C D 

n-13:0 3.27 1.04 N.D. 0.54 

n-14:0 5.66 6.00 1.69 4.66 

n-15:0 8.76 4.6 1.59 2.20 

n-16:0 43.17 24.73 54.90 44.16 

n-18:0 5.30 10.82 14.12 9.68 

Total  66.16 47.19 72.30 61.24 

Branched A B C D 

iso-14:0 1.68 0.77 N.D. N.D. 

anteiso-14:0 0.47 1.75 N.D. 1.99 

iso-15:0 7.72 13.56 6.14 10.88 

anteiso-15:0 1.62 6.69 3.28 6.29 

iso-16:0 1.32 6.42 3.48 6.59 

br-17:0 2.53 5.04 4.71 4.05 

iso-17:0 1.03 2.58 1.42 2.13 

anteiso-17:0 0.51 1.71 1.66 1.7 

Total 16.88 38.52 20.69 33.63 

Monounsaturated A B C D 

16:1
*
 0.79 0.28 N.D. N.D. 

16:1w7 3.01 1.18 N.D. N.D. 

18:1w7 4.29 2.42 1.03 0.83 

18:1w5 5.77 5.89 3.46 2.64 

19:1w9 3.10 4.52 2.52 1.66 

Total 16.96 14.29 7.01 5.13 

19:1w9/(16:1w7+18:1w7) 0.42 1.26 2.45 2.00 

19:1w9/18:1w7 0.72 1.87 2.45 2.00 

n – Normal saturated; iso – Iso branching; anteiso – Anteiso branching; br – Branched at unknown 1132 

position; * – Unknown position of the double bond; N.D. – Not detected.  1133 
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