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Abstract: Stable, water-soluble titanium complexed with mandelic acid was used as a precursor for
titanium phosphorus double oxide obtained in hydrothermal conditions in the presence of phosphoric
acid. Surprisingly, hydrolysis of organic complexes provided a microstructured sphere with narrow
size distribution, low aggregation and a small fraction of morphological irregularities. Obtained
microspheres had a complex structure comprised of flakes, whose size could be manipulated with
temperature conditions. Samples were found to be electrochemically active against sulcotrione, a
well-recognized herbicide. Electrochemical sensors based on the synthesized microspheres were
successfully adapted for natural water reservoir analysis and exhibited low levels of detection of
0.61 µM, limit of quantification of 1.86 µM, wide dynamic linear range from 2 to 200 µM, good
selectivity, excellent reproducibility and in-time stability.

Keywords: hierarchically structured systems; microspheres; water-soluble titanium precursors with
organic acids; hydrothermal synthesis; electrochemical sensing

1. Introduction

Modern material science has a library of synthetic protocols involving multiple sub-
strates and applying various conditions that yield a plethora of new materials. So, the devel-
opment of new functional materials is a challenging task that often requires unconventional
approaches. Recently, considerable attention was attracted to hierarchically structured ma-
terials as a promising division of materials with multiple levels of structural regularity that
provide increased functionality. These types of substrates are well recognized: sorbents [1],
electrocatalysts [2], electrodes for capacitors [3], photo-anodes [4] and sensors [5], due to
their increased specific surface and multimodal porosity. Their multi-regular structure is
an excellent prerequisite for utility as a catalyst or as a catalyst substrate.

Numerous utilizations of hierarchical structures facilitated the widespread develop-
ment of their formation methods. A major avenue in this area of research is top-down
methods based on natural templates [6,7], such as wood [8], leaves and diatoms [9]. In the
bottom-up methods, molecular templates, such as surfactants [10], biopolymers [11] and
peptides [12] are a commonly used group of structure formation means in the synthesis of
sophisticated structures, but their utilization is problematic due to their high cost and low
stability. Scarce examples of template-free hierarchical structure formation are still consid-
ered exceptions, supporting the general trend for the template-based methodology. In this
view, the development of cheap and affordable template-free methods is of high relevance.
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Raising concerns about environmental pollution and toxic impurities facilitates studies
in the area of new, prompt and reliable methods for the detection of hazardous materials.
Today’s quality of life is secured by the high quality of the food supply, which in turn is
attained with complex agricultural measures, including the massive application of herbi-
cides and pesticides for the modulation of crops and cereal harvesting [13]. Sulcotrione is a
well-recognized triketone “eco-friendly” herbicide that is used on wide-leafed agricultural
plants. However, recent reports on the possible health and environmental effects prob-
lematize their use and require systematic monitoring [14,15]. Quality control of herbicide
content in distributed food requires prompt, accurate methods for its quantification. Those
include dominantly HPLC- and GC-based methods; however, their utilization requires
expensive equipment and labor-intensive sample preparation. Other selective and sen-
sitive methods include immunoassay [16] and aptamer-based colorimetry [17], but their
selectivity is compromised by the price and fragility of the ligands based on antibodies
and aptamers. Electrochemical methods, on the other hand, have become popular in the
analytical chemistry of herbicides, and particularly sulcotrione, because they are simple to
use, quick and adaptable methods that are widely implemented for the routine control of
water and biological samples.

Major advances in the field of EC-sensors are related to the application of materials
with novel micro- and nano-structures with increased surface specificity, signal transfer and
selectivity [18]. Recent achievements in the synthesis of nanostructured and hierarchically
structured materials gave new momentum to the new electrochemical sensors, enlarging
the list of available substrates for analytical application [19–23].

Titanium dioxide is a well-known semiconducting platform used in almost every
application field of materials chemistry. It is a robust, non-toxic, abundant and affordable
metal oxide that serves as a perfect substrate for new developments in functional materials.
One of the major challenges in its synthesis are the precursors, which are often toxic, volatile
and pose a significant environmental threat. Moreover, pristine titania is rarely consid-
ered for sensing applications: it often requires composite formation or significant surface
modification for better performance [24]. Phosphate modification of titania is a promising
functionalization method that has been employed for ion-exchange [25,26], catalysis [27,28],
electrode formation [29] and photoanodes [30]. We suggested that phosphatization could
be adapted for the development of a new electrochemically active composite. To test this
hypothesis, we hydrothermally treated a newly synthesized mandelic acid complex of
titanium in the presence of phosphoric acid and obtained novel hierarchical structures that
were tested in the sensing of the widely used herbicide sulcotrione. The newly synthesized
composite exhibited considerably low detection limits, high stability and selectivity and
could be suggested for conventional detection of the herbicide. The schematic illustration
of the work is given in Figure 1.
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centages were calculated as part of graphite powder only, while the percentage of oil was 
always constant at 20%. After homogenization of the mixture, the home made Teflon body 
was filled with carbon paste, and the surface of the electrode was cleaned with paper and 
used without additional purification [31,32]. 

Figure 1. Preparation route for idea AAD microstructures and illustration of the work.

2. Materials and Methods
2.1. Reagents

DL-Mandelic acid (100%, Bingospa), NH4OH (25%, NevaReaktiv), H2O2 (40%, Biokhim-
Reagent), titanium powder PTM–1, H3PO4 (98%, Vekton) were used without prelimi-
nary purification.

2.2. Electrochemical Measurements

Electrochemical studies were performed at CH Instruments bipotentiostat (CHIn-
strumetns, Austin, TX, USA), model 760 b. CHI voltammetry software (Version 2.03,
CHInstrumetns). A three-electrode voltammetric cell (total volume of 10 mL) was used
where unmodified or modified CPE was used as the working electrode, Ag/AgCl as the
reference electrode and a platinum wire as the counter electrode. For the electrode charac-
terization, a 5 mM mixture of K3[Fe(CN)6] /K4[Fe(CN)6] (1:1) in 0.1 M KCl was used as a
testing solution, and electrochemical impedance spectroscopy (EIS) in the range of 10 mHz
to 10 kHz and cyclic voltammetry (CV) in the potential range of −0.5 V to 1.2 V at a scan
rate of 50 mV/s, were employed. For the development of analytical procedures, square
wave voltammetry was used [31].

2.3. Electrode Preparation

Unmodified carbon paste electrode (CPE) was prepared by mixing 80% by weight of
carbon powder and 20% paraffin oil in a mortar. After a half hour of mixing, a homogeneous
carbon paste (CP) was formed. The modified electrodes were prepared by adding a certain
amount (by mass) of synthesized materials to the unmodified carbon paste. Percentages
were calculated as part of graphite powder only, while the percentage of oil was always
constant at 20%. After homogenization of the mixture, the home made Teflon body was
filled with carbon paste, and the surface of the electrode was cleaned with paper and used
without additional purification [31,32].
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2.4. Synthesis of Ti-Complex with DL-Mandelic Acid

A total of 0.41 g (8.5 mmol) of titanium powder was dispersed in 5 mL of NH4OH(25%),
followed by the addition of 40 mL of hydrogen peroxide (37%), to dissolve the metal, con-
trolling the temperature of the mixture within a range of 5–10 ◦C. The resulting light yellow
solution of peroxocomplex was then mixed with a DL-mandelic acid (2.6 g, 17 mmol) solu-
tion in 5 mL of water. The resulting water solution is then evaporated at a reduced pressure
on a rotary evaporator at 30–40 ◦C, giving the titanium complex as a light yellow solid.

2.5. Synthesis of Microstructured Titanium-Phosphorus Double Oxide by Hydrothermal Method

A solution of the titanium complex (0.69 g, 1.66 mmol) in 20 mL of water was placed
in a Teflon cup, followed by the addition of 1.15 mL of phosphoric acid (98%). The
prepared aqueous solutions was then sealed in a Teflon-coated stainless steel autoclave
and heated at 80 and 180 ◦C for 12 h. Resulting precipitates were decanted and washed
with distilled water, followed by centrifugation. Finally, precipitates were dried in the
vacuum at 90 ◦C overnight. Samples obtained at 80 and 180 ◦C were named AAD66 and
AAD85, respectively.

2.6. Material Characterization

The registration of IR transmission spectra was carried out on a Shimadzu IRAffinity
S1 IR-Fourier spectrometer in the range from 400 to 4000 cm–1 with a resolution of 4 cm–1

and in 100 repetitions. Elemental analysis and surface morphology of the samples were
studied using a Jeol JSM 7001F electron microscope equipped with an Oxford INCA X-max
80 energy dispersive spectrometer. The accelerating voltage of the electron gun was set to
the 20 kV required for quantitative EDX analysis. The phase composition and structure of
the samples were studied on a Rigaku Optima IV powder diffractometer. The survey was
carried out in the range of 2θ angles from 5◦ to 90◦ at a survey rate of 5◦/min. The study
used radiation from a CuKα copper tube (λ = 1.541 Å) at an accelerating voltage of 40 kV.
The size distribution of the microspheres was calculated based on 100+ measurements
taken using SEM-microphotographs.

3. Results
3.1. Material Characterization

The majority of the reports about titanium phosphates synthesis rely on the utilization
of humidity-sensitive, volatile and toxic titanium derivatives such as titanium tetrachlo-
ride [33–37], titanium tetraisopropoxide [38–40] or titanium tetrabutoxide [41–43]. Phos-
phatization of titania occurs with phosphoric acid or with water-soluble phosphate salts.
In this work, we relied on the previous developments of the Kakihana group [44,45] for
the synthesis of water-soluble complexes and used them for the preparation of a titanium
dioxide precursor. This approach implies dissolution of metal Ti in hydrogen peroxide
followed by organic acid stabilization. Some of the complexes were recrystallized and char-
acterized with single-crystal X-ray [46]. Obtained complexes are non-volatile solids that
are stable over long periods of time and could be redissolved and extracted by evaporation
from water without loss of a composition. Here, we stabilized Ti-complex with mandelic
acid and used it for hydrothermal treatment in the presence of phosphoric acid to obtain a
titanium-phosphorus double oxide composite.

It was found that an equimolar ratio of Ti and P, as well as two- and three-fold excess of
phosphoric acid, provided precipitates of amorphous titania with little phosphate content.
However, application of a 10+ molar excess of phosphoric acid at 180 ◦C for 12 h provided
a microspherical substrate with a complex structure. SEM microphotographs of the sample
are given at Figure 2A. Interestingly, the same morphology of the phosphatized titania was
retained at the lower temperature of 80 ◦C (Figure 2B). Although microstructure formation
is not new for the titanium-phosphate double oxide [41,47], the obtained microspheres were
a few times bigger in size, had a narrow size distribution (Figure 2D,E), low aggregation
and an almost complete absence of morphological irregularities/different shapes. It is
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evident that microspheres are comprised of distinctive flakes, whose sizes are comparable
with those of the spherical aggregate. EDS elemental analysis of microspheres showed
even distribution of titanium and phosphorous (Figure 2C,F) with the elemental ratio
Ti:P equal to 0.84 for AAD85 and 0.76 for AAD66. Noteworthy is that a freshly prepared
Ti-complex without evaporation, as well as a Ti-complex without stabilization with DL-
mandelic acid, do not yield microstructure. These two cases demonstrate the negative
and positive effects of excessive hydrogen peroxide and mandelic acid on microstructure
formation, respectively.
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spectra of the AAD-samples.

The X-ray diffractogram indicates the obtained materials are amorphous. (Figure 2G)
Broad absorption line at 3460 cm–1 in the FTIR spectrum (Figure 2H) of the samples corre-
sponds to stretching vibrations of surface hydroxyl groups and adsorbed water molecules.
Asymmetric stretching vibrations of NH4

+ and C–H groups are observed at wave numbers
3200 cm–1 and 3045 cm–1, respectively, in the organic complex and obtained sample [48,49].
The band at 1630 cm–1 corresponds to bending vibrations of internal O–H bonds [50,51].
Organic residues of mandelic acid remain embedded in the double oxide microstructure:
characteristic bands at 1450 and 1403 cm–1 refer to H–C–O scissor and C–O–C asymmetric
stretching vibration, while the peaks at 1185 cm–1 and 944 cm–1 common for all samples
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are attributed to the C–H bond [49]. Wave numbers 755, 660, 570, and 460 cm–1 refer to the
stretching vibrations of Ti–O, O–Ti–O, νPO4 and P–O, respectively [52–55].

3.2. Electrocatalytic Properties of the Materials

Electrocatalytic performances of the materials were tested using CV and EIS in a
standard probe Fe2+/3+ redox couple in order to scrutinize their electron transfer capacities
and conductivity. Results are given in Figure 3. In EIS measurements, the resulting plots
are composed of two ranges for all the electrodes, where a semicircle is the spectrum at
high frequencies and a straight line is the low frequency range. Tested electrodes were
bare CPE, AAD66/CPE, where the percentage of AAD material was 10%, and prepared in
the same way as AAD85/CPE. The obtained Rct values are contact resistance and can be
assigned to the intrinsic resistance of the prepared electrode. These values for all electrodes
were calculated as semicircle diameters (Figure 3A). For the tested electrodes, bare CPE,
AAD66/CPE and AAD85/CPE, the estimated Rct values were 21,000 Ω, 700 Ω and 1700 Ω,
respectively. Compared to other electrodes, AAD66/CPE has the lowest resistance value.
These results confirm the assumption that adequately prepared materials influenced the
properties of the electrode, including, among other things, the electrical conductivity
and wetting of the surface. Among others, it can be concluded that this electrode has
the rapidest charge transfer on its surface. To confirm the above-mentioned facts, the
electrochemical response of the electrodes was further elucidated using CV measurements
in the same working solution (Figure 3B). From these tests, it can be seen that both materials
strongly support the diffusion capacities of the bare electrode and increase its electron
transfer capability (Figure 3C). However, it is noticeable that the engineering of the material
architecture is correlated with the electrochemical properties of the materials. A higher
treatment temperature increases the effectiveness of the CPE electrodes in regards to
electrochemical parameters. The major morphological difference between the AAD66 and
the low-temperature analogue is the well discernible flakes constituting the microspheres. It
seems like better-differentiated flakes promote the conductivity in AAD66. The confirmed
strong improvement in electron shuttling of the redox probe can promote this material as
an efficient candidate for electrode modification and further application for electrochemical
detection studies.

To investigate electrochemical behavior and confirm the diffusion capacities of the
materials, both modified electrodes were tested at various scan rates (10 mV/s to 100 mV/s)
in the Fe2+/3+ redox couple solution. The increase in the scan rate is followed by an increase
in the oxidation and reduction currents in the redox system, and these increases can be
expressed as a linear dependence of the current from the square root of the scan rate. Both
electrodes showed the same behavior. This characteristic behavior for diffusion-controlled
processes is additional confirmation of the great potential of the prepared materials for
electrocatalytic application. The diffusion-controlled process is further confirmed by plot-
ting log(I) versus log(v) for both electrodes (Figure 3D–G). Finally, the summary of the
electrocatalytic examination identifies microspherical titanium-phosphorus double oxide
treated at 180 ◦C (labeled as AAD-66) as a notable candidate for potential application in
electrochemical sensorics and further real-world sample analysis.

In addition, to optimize the amount of the modifier in the carbon paste, we employed
additional EIS measurements in the iron redox couple with the CPE electrodes with different
AAD66 contents—5, 7, 10 and 15%. From the results reviewed in Figure 3H, 10% of AAD66-
weighted CPE electrode showed the lowest Rct value, which implies that this amount
is most suitable for the preparation of the modified AAD66/CPE. Thus, for the further
experiments, we selected this mode of sensor construction.
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3.3. Electrochemical Performance of Prepared Structures toward Sulcotrione

The fusibility of the proposed materials toward analyte recognition is a crucial step in
the development of electroanalytical methods. For this purpose, we selected CV to inspect
the impact of synthesized electrocatalysts on the electrochemical detection of sulcotrione. In
Figure 4, the electrochemical oxidation behaviors of the AAD66/CPE and the AAD85/CPE
in a 1 mM sulcotrione solution in BRBS at pH 6 were displayed. The operating scan
rate was 25 mV/s, and the material content of the CPE was 10%. As can be seen, both
electrodes in the selected working potential range provide a well-defined and oval-shaped
oxidation peak with a potential maximum at around 1.2 V. No signal was observed in
the reversed scan, which indicates irreversible redox behavior of the sulcotrione using
the proposed electrocatalysts. These findings clearly confirmed the previously described
catalytic properties of these materials, as AAD66/CPE delivers better catalytic properties
toward sulcotrione oxidation with a current response of 5.4 µA versus AAD85/CPE with
an obtained current of 3.8 µA (Figure 4). This behavior, similar to that of the Fe2+/3+ redox
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couple, can be attributed to the better architecture of the material, which is correlated to
the higher active surface area and synergetic effect of titanium and phosphorous. These
inferences lead to the final electrocatalytic properties of the materials, such as a high
electron transfer rate, higher electrode surface areas and increased diffusion at the interface
electrode/testing solution. Based on the conducted study, we can summarize that AAD66
material is suitable for the architecture of titanium/phosphorous oxide nanoparticles for the
construction of an electrochemical sensor by modifying the CPE electrode for sulcotrione
detection with 10% of the loaded amount of electrocatalyst.
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3.4. Effect of Various Parameters toward Sulcotrione Detection Using AAD66/CPE

To better cover the utilization of AAD66/CPE for the electroanalysis of sulcotrione,
the effect of varying pH levels was studied using the CV technique in the solution of 1 mM
of analyte. Different pHs of BRBS solutions were tested in the range of 2 to 12, with a
sweep rate of 25 mV/s (Figure 5A,B). The oxidation current increase was noticeable with
the increase of the pH from 2 to 6, as well as with slight changes in the peak potential,
which are reflected as a potential decrease toward less positive values (Figure 5C). However,
even if this is the case, these potential differences cannot be shown to have a significant
correlation with pH. Starting at pH 7, peak current starts to decrease. At pHs higher than
eight, residual current leaped rapidly and caused oxidation peak fading (Figure 5B). As a
summary, it should be emphatically stated that the highest sulcotrione current response
was obtained at pH 6 on AAD66/CPE. Thus, the electrochemical studies in the research
were conducted in this supporting electrolyte.

CV, at different sweep rates (5–200 mV/s), accomplished over AAD66/CPE in sul-
cotrione solution, was used to elucidate the nature of the interface reaction (Figure 5D).
With the scanning rate rising, a rising value of the peak current was noticed (Figure 5E).
This increase was continuous and can be expressed as Ia vs. the square root of the scan
rate, where Ia is the oxidation peak current. The regression equation for this dependence
is Ia = 0.8723 v1/2 (mv/s)1/2 – 0.1824, with a regression coefficient of 0.990, indicating the
diffusion-controlled nature of the electrochemical reaction of sulcotrione oxidation over
AAD66/CPE. To further confirm this, the dependence of log(Ia) vs. log(v) was calculated
(Figure 5F). The regression equation of log(Ia) = 0.5043 log(v) – 0.0812 yields a linear re-
sponse with an R2 = 0.993. The slope of this linearity was almost equal to the ideal value of
50 mV, further confirming the dominant diffusion-controlled nature of the interface reaction.
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3.5. Sulcotrione Determination on AAD66/CPE
3.5.1. Method Selection and Optimization

To properly offer electroanalytical methods for targeted analyte determination, the
most common pulse methods are tested. In our study, we compare the differential pulse
voltammetric (DPV) and SWV methods toward sulcotrione detection over AAD66/CPE in
BRBS at pH 6. Results are sectioned in Figure 6. Both techniques provide electrochemical
oxidation of the analyte; however, using the SWV method, a notably higher oxidation
peak current is obtained. Hence, we can select this technique as a more appropriate
candidate for the development of the analytical procedure for sulcotrione determination.
Further studies were conducted with the aim of optimizing SWV parameters, which can
effectively contribute to the final analytical characteristics of the procedure. Pulse amplitude
(ranging from 10 to 100 mV), frequency (ranging from 10 to 100 Hz) and increment (ranging
from 2 to 16 mV) were tested. During the optimization of one parameter, the others
were kept constant. In such a way, we acquired the following values: pulse amplitu-
de—20 mV, pulse increment—10 mV and frequency—40 Hz, as optimal, and we used them
for procedure evolution.

3.5.2. Analytical Method Development

As the most important outcome of this study, we measured the electrochemical re-
sponse of the AAD66/CPE electrode with varying sulcotrione concentrations. All experi-
ments were conducted under previously optimized experimental conditions, and voltam-
mograms were recorded with the SWV technique. The results are shown in Figure 7A, while
the resulting calibration plot is provided in Figure 7B. From these results, we can see that the
rise in the sulcotrione concentration is accompanied by an increase in the resulting current
response. This increase shows a linear response of current vs. concentration in a very wide
range from 2 to 200 µM with the following relationship: Ia (µA) = 0.0064 × c (µM) + 0.0043
and a regression coefficient of 0.989. LOD, calculated as 3σ/slope, of the proposed method
was calculated to be 0.61 µM, and LOQ, calculated as 10σ/slope, of 1.86 µM. These per-
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formances can be attributed to the structural architecture of the material and evaluated
electrocatalytic properties, transfer kinetic and diffusion rate. The results, in terms of limit
of detection and linear range, are comparable with the recently published studies. Due to
the lack of data about this topic, we can conclude that our results are more or less similar
to the results obtained by Stanković et al. and Rocaboy-Faquet et al., while Rajiji and
coworkers provided a lower LOD and a wider linear range [56–58]. The repeatability of the
method was tested with the five measurements of the two concentrations of sulcotrione,
20 and 80 µM (Figure 7C,D). At both concentration levels, the relative standard deviations
of the ten measurements were lower than 4.5%, indicating excellent accuracy and precision
of the developed approach. Stability studies were conducted over one month. During this
time, electrodes were stored under laboratory conditions. By testing 20 µM of sulcotrione
solution every four to five days during this period (Figure 7D), the obtained current had
an RSD of 4.1%, which is in the range of RSD for reproducibility measurements, which
indicates that during this period, the current did not change significantly and that the
electrode retained its original properties.
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3.6. Interference Studies and Practical Applicability

Selectivity is a critical component for efficient electrochemical sensors. With the aim
to investigate selectivity for the AAD66/CPE sensor, we tested several species that can be
found during practical application of the method (Figure 8). In the presence of common
and widely present ions, oxidation current was unchanged, except for the nitrite and
fluoride ions, where obtained current rose dramatically. However, nitrite and fluoride
ions, especially in the tested concentration, are present in the specific waters, and we
can still conclude that our method can be used in common practice. In the presence of
interesting organic compounds, the proposed sensor shows good selectivity. Significant
current changes were noted only in the presence of the structurally similar pesticide,
mesotrione. As these two pesticides do not have common use in the field, we can assume
that their joint presence in water is unexpected. Based on previously conducted studies, we
can conclude that the proposed sensor possesses satisfactory selectivity and can be used
for practical applications.
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Practical applicability was tested with the utilization of the AAD66/CPE sensor for the
determination of sulcotrione levels in real-time water samples. Two types of samples were
selected: pipe water and wastewater. Samples were analyzed according to the developed
procedure. Sampling was as follows: samples were taken directly from the source and
stored in the refrigerator until the day of testing. On the day of work, samples were diluted
with BRBS pH 6 in a ratio of 1:1 and tested directly. After investigation of the samples,
recovery studies were conducted with the addition of standard sulcotrione solution. The
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spiked amounts were 2, 4 and 5 µM. Resulting voltammograms are summarized in Figure 9,
while results obtained from the calibration curve are given in Table 1. Recovery outcomes
from real samples were comparable with the added amount of sulcotrione, with results
fluctuating from 95 to 103%, and these results prove that the proposed sensor can be
successfully applied for sulcotrione monitoring in related samples.
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Table 1. Results for sulcotrione detections and recovery studies in real-time samples.

Found (µM) Added
(µM)

Found
(µM)/Recovery (%)

Added
(µM)

Found
(µM)/Recovery (%)

Added
(µM)

Found
(µM)/Recovery (%)

Pipe water 0.00 2.00 1.94/97 2.00 4.04/101 1.00 5.13/103
Wastewater 0.00 2.00 1.98/98 2.00 4.09/102 1.00 5.08/102

4. Conclusions

In this work, microspherical titanium-phosphorus double oxide nanostructures were
synthesized, and morphological tests with XRD and SEM confirmed crystal structure,
uniformity and flake architecture. Both materials serve as excellent current amplifiers for
the bare carbon paste electrode. The nanohybrid structure obtained at a higher treatment
temperature possesses a better conductive nature and served as an excellent platform for
the development of an electrochemical sensor with an application in the analysis of the
environmental contaminant sulcotrione. Excellent analytical parameters were obtained in
terms of limit of detection, linear working range and selectivity. The applicability to real-
time samples demonstrated in this work suggests that this sensor exhibits great potential
for further studies and possible extension from laboratory application to commercial use.
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