Приказ основних података о документу

dc.creatorStojanović, Ksenija A.
dc.creatorŽivotić, Dragana R.
dc.date.accessioned2018-11-22T00:25:41Z
dc.date.available2018-11-22T00:25:41Z
dc.date.issued2013
dc.identifier.issn0166-5162
dc.identifier.urihttps://cherry.chem.bg.ac.rs/handle/123456789/1614
dc.description.abstractThe origin of the organic matter (OM) and the characteristics of the paleoenvironment of Serbian brown coals covering a time-span from the Lower to the Upper Miocene were evaluated and compared based on comprehensive petrological and biomarker analyses. Investigated coals are typical humic coals. Peat-forming vegetation is characterized by abundant decay resistant gymnosperm (coniferous) plants, followed by variable amount of angiosperms. Coal forming plants belonged to the gymnosperm families Taxodiaceae, Podocarpaceae, Cupressaceae, Araucariaceae, Phyllocladaceae and Pinaceae. Peatification proceeded in fresh water environment under variable Eh settings, from anoxic to slightly oxic condition. Upper Miocene lignites were formed in neutral to slightly acidic environment, whereas Lower and Middle Miocene coals were deposited under neutral to slightly alkaline, and more reductive conditions, which is the result of calcium-rich surface waters derived from the surrounding Jurassic to Cretaceous calcareous country rock and higher water column level. Diagenetic changes of the OM were governed by bacterial activity, rather than thermal alteration. Biomarker pattern does not significantly differ in Serbian coals of different ages. The main differences between Upper, Middle and Lower Miocene coals are expressed by higher Gelification Index (GI), proxy ratio (P-aq), n-C-23/(n-C-27 + n-C-31) and pimarane/16 alpha(H)-phyllodadane ratio, as well as lower relative abundance of C-31 alpha beta(R)-hopane of the latter one. OM of Lower Miocene coals is more mature, corresponding to immature/early mature stage (huminite/vitrinite reflectance similar to 0.45), whereas OM of Upper Miocene lignites is in immature diagenetic phase (huminite reflectance similar to 0.3). Consequently, higher gelification of Lower Miocene coals is probably an effect of higher rank, however high humidity/wet climate and low acidity within the mire could not be excluded. A good correlation between biomarker parameters and paleoclimate data is observed, indicating that biomarker patterns represent a valuable tool that reflect even slight paleoclimate changes in Serbia during Miocene.en
dc.publisherElsevier Science Bv, Amsterdam
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/176006/RS//
dc.rightsrestrictedAccess
dc.sourceInternational Journal of Coal Geology
dc.subjectBrown coalsen
dc.subjectSerbiaen
dc.subjectMioceneen
dc.subjectOrganic matteren
dc.subjectBiomarkersen
dc.subjectPaleoenvironmenten
dc.titleComparative study of Serbian Miocene coals - Insights from biomarker compositionen
dc.typearticle
dc.rights.licenseARR
dcterms.abstractСтојановић, Ксенија; Зивотиц, Драгана;
dc.citation.volume107
dc.citation.spage3
dc.citation.epage23
dc.identifier.wos000316512600002
dc.identifier.doi10.1016/j.coal.2012.09.009
dc.citation.other107: 3-23
dc.citation.rankM21
dc.type.versionpublishedVersionen
dc.identifier.scopus2-s2.0-84873993286


Документи

Thumbnail

Овај документ се појављује у следећим колекцијама

Приказ основних података о документу