Repozitorijum Hemijskog fakulteta - Cherry
Univerzitet u Beogradu - Hemijski fakultet
    • English
    • Српски
    • Српски (Serbia)
  • Srpski (latinica) 
    • Engleski
    • Srpski (ćirilica)
    • Srpski (latinica)
  • Prijava
Pregled zapisa 
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • Pregled zapisa
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • Pregled zapisa
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spent mushroom compost as substrate for the production of industrially important hydrolytic enzymes by fungi Trichoderma spp. and Aspergillus niger in solid state fermentation

Samo za registrovane korisnike
2015
Autori
Grujić, Marica
Dojnov, Biljana
Potočnik, Ivana
Duduk, Bojan
Vujčić, Zoran
Članak u časopisu (Objavljena verzija)
Metapodaci
Prikaz svih podataka o dokumentu
Apstrakt
Mushroom production is the biggest solid state fermentation industry in the world. Disposal and storage of spent mushroom compost (SMC) that remains after mushroom harvest poses a big economic and environmental problem. Production of industrially important hydrolytic enzymes by fungi on various agro-industrial wastes is a significant, open chapter in biotechnology. This paper proposes a novel application of SMC as substrate for cultivation of fungi in solid state fermentation (SSF) in order to obtain the enzymes cellulase, xylanase, amylase and beta-glucosidase. SMC can be used as a good substrate for cultivation of Trichoderma and Aspergillus without the addition of supplementary (nutritive) elements. Starting amount of SMC was reduced by 30% due to hydrolysis by a complex of cellulolytic enzymes. Material that is left behind is a more suitable fertilizer for horticulture. One fungal isolate was pointed out as a promising producer (Trichoderma atroviride isolate T42). It produced the ...greatest amount of total protein (0.204 mg mL(-1)), five isoforms of beta-glucosidase and the highest level (12 isoforms) of both endocellulase (0.76 U mL(-1)) and xylanase (2.31 U mL(-1)). The capacity of T42 to produce all examined enzymes in such a high number of isoforms demonstrates successful adaptation to new substrates.

Ključne reči:
Spent mushroom compost / Trichoderma / Amylase / Cellulase / Xylanase
Izvor:
International Biodeterioration and Biodegradation, 2015, 104, 290-298
Izdavač:
  • Elsevier Sci Ltd, Oxford
Finansiranje / projekti:
  • Proizvodnja, izolovanje i karakterizacija enzima i malih molekula i njihova primena u rastvornom i imobilizovanom obliku u biotehnologiji hrane, biogorivima i zaštititi životne sredine (RS-172048)
  • Proučavanje biljnih patogena, artropoda, korova i pesticida u cilju razvoja metoda bioracionalne zaštite bilja i proizvodnje bezbedne hrane (RS-31043)

DOI: 10.1016/j.ibiod.2015.04.029

ISSN: 0964-8305

WoS: 000362308400041

Scopus: 2-s2.0-84934766303
[ Google Scholar ]
36
32
URI
https://cherry.chem.bg.ac.rs/handle/123456789/1974
Kolekcije
  • Publikacije
Institucija/grupa
Hemijski fakultet
TY  - JOUR
AU  - Grujić, Marica
AU  - Dojnov, Biljana
AU  - Potočnik, Ivana
AU  - Duduk, Bojan
AU  - Vujčić, Zoran
PY  - 2015
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/1974
AB  - Mushroom production is the biggest solid state fermentation industry in the world. Disposal and storage of spent mushroom compost (SMC) that remains after mushroom harvest poses a big economic and environmental problem. Production of industrially important hydrolytic enzymes by fungi on various agro-industrial wastes is a significant, open chapter in biotechnology. This paper proposes a novel application of SMC as substrate for cultivation of fungi in solid state fermentation (SSF) in order to obtain the enzymes cellulase, xylanase, amylase and beta-glucosidase. SMC can be used as a good substrate for cultivation of Trichoderma and Aspergillus without the addition of supplementary (nutritive) elements. Starting amount of SMC was reduced by 30% due to hydrolysis by a complex of cellulolytic enzymes. Material that is left behind is a more suitable fertilizer for horticulture. One fungal isolate was pointed out as a promising producer (Trichoderma atroviride isolate T42). It produced the greatest amount of total protein (0.204 mg mL(-1)), five isoforms of beta-glucosidase and the highest level (12 isoforms) of both endocellulase (0.76 U mL(-1)) and xylanase (2.31 U mL(-1)). The capacity of T42 to produce all examined enzymes in such a high number of isoforms demonstrates successful adaptation to new substrates.
PB  - Elsevier Sci Ltd, Oxford
T2  - International Biodeterioration and Biodegradation
T1  - Spent mushroom compost as substrate for the production of industrially important hydrolytic enzymes by fungi Trichoderma spp. and Aspergillus niger in solid state fermentation
VL  - 104
SP  - 290
EP  - 298
DO  - 10.1016/j.ibiod.2015.04.029
UR  - Kon_2929
ER  - 
@article{
author = "Grujić, Marica and Dojnov, Biljana and Potočnik, Ivana and Duduk, Bojan and Vujčić, Zoran",
year = "2015",
abstract = "Mushroom production is the biggest solid state fermentation industry in the world. Disposal and storage of spent mushroom compost (SMC) that remains after mushroom harvest poses a big economic and environmental problem. Production of industrially important hydrolytic enzymes by fungi on various agro-industrial wastes is a significant, open chapter in biotechnology. This paper proposes a novel application of SMC as substrate for cultivation of fungi in solid state fermentation (SSF) in order to obtain the enzymes cellulase, xylanase, amylase and beta-glucosidase. SMC can be used as a good substrate for cultivation of Trichoderma and Aspergillus without the addition of supplementary (nutritive) elements. Starting amount of SMC was reduced by 30% due to hydrolysis by a complex of cellulolytic enzymes. Material that is left behind is a more suitable fertilizer for horticulture. One fungal isolate was pointed out as a promising producer (Trichoderma atroviride isolate T42). It produced the greatest amount of total protein (0.204 mg mL(-1)), five isoforms of beta-glucosidase and the highest level (12 isoforms) of both endocellulase (0.76 U mL(-1)) and xylanase (2.31 U mL(-1)). The capacity of T42 to produce all examined enzymes in such a high number of isoforms demonstrates successful adaptation to new substrates.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "International Biodeterioration and Biodegradation",
title = "Spent mushroom compost as substrate for the production of industrially important hydrolytic enzymes by fungi Trichoderma spp. and Aspergillus niger in solid state fermentation",
volume = "104",
pages = "290-298",
doi = "10.1016/j.ibiod.2015.04.029",
url = "Kon_2929"
}
Grujić, M., Dojnov, B., Potočnik, I., Duduk, B.,& Vujčić, Z.. (2015). Spent mushroom compost as substrate for the production of industrially important hydrolytic enzymes by fungi Trichoderma spp. and Aspergillus niger in solid state fermentation. in International Biodeterioration and Biodegradation
Elsevier Sci Ltd, Oxford., 104, 290-298.
https://doi.org/10.1016/j.ibiod.2015.04.029
Kon_2929
Grujić M, Dojnov B, Potočnik I, Duduk B, Vujčić Z. Spent mushroom compost as substrate for the production of industrially important hydrolytic enzymes by fungi Trichoderma spp. and Aspergillus niger in solid state fermentation. in International Biodeterioration and Biodegradation. 2015;104:290-298.
doi:10.1016/j.ibiod.2015.04.029
Kon_2929 .
Grujić, Marica, Dojnov, Biljana, Potočnik, Ivana, Duduk, Bojan, Vujčić, Zoran, "Spent mushroom compost as substrate for the production of industrially important hydrolytic enzymes by fungi Trichoderma spp. and Aspergillus niger in solid state fermentation" in International Biodeterioration and Biodegradation, 104 (2015):290-298,
https://doi.org/10.1016/j.ibiod.2015.04.029 .,
Kon_2929 .

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu CHERRY (CHEmistry RepositoRY) | Pošaljite zapažanja

re3dataOpenAIRERCUB
 

 

Kompletan repozitorijumInstitucije/grupeAutoriNasloviTemeOva institucijaAutoriNasloviTeme

Statistika

Pregled statistika

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu CHERRY (CHEmistry RepositoRY) | Pošaljite zapažanja

re3dataOpenAIRERCUB