Show simple item record

dc.creatorHabtamu, Henok B.
dc.creatorSentić, Milica
dc.creatorSilvestrini, Morena
dc.creatorDe Leo, Luigina
dc.creatorNot, Tarcisio
dc.creatorArbault, Stephane
dc.creatorManojlović, Dragan D.
dc.creatorŠojić, Nešo
dc.creatorUgo, Paolo
dc.date.accessioned2018-11-22T00:33:21Z
dc.date.available2018-11-22T00:33:21Z
dc.date.issued2015
dc.identifier.issn0003-2700
dc.identifier.urihttp://cherry.chem.bg.ac.rs/handle/123456789/2014
dc.description.abstractWe report here the design of a novel immunosensor and its application for celiac disease diagnosis, based on an electrogenerated chemiluminescence (ECL) readout, using membrane-templated gold nanoelectrode ensembles (NEEs) as a detection platform. An original sensing strategy is presented by segregating spatially the initial electrochemical reaction and the location of the immobilized biomolecules where ECL is finally emitted. The recognition scaffold is the following: tissue transglutaminase (tTG) is immobilized as a capturing agent on the polycarbonate (PC) surface of the track-etched templating membrane. It captures the target tissue transglutaminase antibody (anti-tTG), and finally allows the immobilization of a streptavidin-modified ruthenium-based ECL label via reaction with a suitable biotinylated secondary antibody. The application of an oxidizing potential in a tri-n-propylamine (TPrA) solution generates an intense and sharp ECL signal, suitable for analytical purposes. Voltammetric and ECL analyses evidenced that the ruthenium complex is not oxidized directly at the surface of the nanoelectrodes; instead ECL is generated following the TPrA oxidation, which produces the TPrA(center dot+) and TPrA(center dot) radicals. With NEEs operating under total overlap diffusion conditions, high local fluxes of these reactive radicals are produced by the nanoelectrodes in the immediate vicinity of the ECL labels, so that they efficiently generate the ECL signal. The radicals can diffuse over short distances and react with the Ru(bpy)(3)(2+) label. In addition, the ECL emission is obtained by applying a potential of 0.88 V versus Ag/AgCl, which is about 0.3 V lower than when ECL is initiated by the electrochemical oxidation of Ru(bpy). The immunosensor provides ECL signals which scale with anti-tTG concentration with a linearity range between 1.5 ng.mL(-1) and 10 mu g.mL(-1) and a detection limit of 0.5 ng.mL(-1). The sensor is finally applied to the analysis of anti-tTG in human serum samples, showing to be suitable to discriminate between healthy and celiac patients.en
dc.publisherAmer Chemical Soc, Washington
dc.relationFrench Foreign Ministry (Bourse dExcellence Eiffel)
dc.relationMinistry of Science and Technological Development (Republic of Serbia)
dc.relationCross-Border Cooperation Italy-Slovenia Program - Strategic Project TRANS2CARE
dc.relationMIUR (Rome) [PRIN 2010AXENJ8]
dc.relationErasmus Placement Program
dc.rightsrestrictedAccess
dc.sourceAnalytical Chemistry
dc.titleA Sensitive Electrochemiluminescence Immunosensor for Celiac Disease Diagnosis Based on Nanoelectrode Ensemblesen
dc.typearticle
dc.rights.licenseARR
dcterms.abstractAрбаулт, Степхане; Нот, Тарцисио; Манојловић, Драган; Сојиц, Несо; Уго, Паоло; Сентиц, Милица; Хабтаму, Хенок Б.; Силвестрини, Морена; Де Лео, Луигина;
dc.citation.volume87
dc.citation.issue24
dc.citation.spage12080
dc.citation.epage12087
dc.identifier.wos000366871500021
dc.identifier.doi10.1021/acs.analchem.5b02801
dc.citation.other87(24): 12080-12087
dc.citation.rankaM21
dc.identifier.pmid26556023
dc.description.otherSupplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/3329]
dc.type.versionpublishedVersionen
dc.identifier.scopus2-s2.0-84950139730
dc.identifier.rcubKon_2969


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record