Faculty of Chemistry Repository - Cherry
University of Belgrade - Faculty of Chemistry
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterisation and the effects of bilirubin binding to human fibrinogen

Thumbnail
2019
10.1016@j.ijbiomac.2019.01.124.pdf (2.772Mb)
Authors
Gligorijević, Nikola
Minić, Simeon L.
Robajac, Dragana B.
Nikolić, Milan
Ćirković-Veličković, Tanja
Nedić, Olgica
Article (Accepted Version)
Metadata
Show full item record
Abstract
Fibrinogen, a protein involved in blood coagulation, is very susceptible to oxidation. Oxidation alters its function and usually makes it more thrombogenic. Bilirubin, an end-product of the haem degradation in vertebrates, is known for its antioxidant properties. The present paper describes interaction between fibrinogen and bilirubin, and the influence of bilirubin on the formation of fibrin and protection against oxidation. The binding constant of 4.5 × 104 M−1 was determined for the fibrinogen/bilirubin complex at 37 °C. There is no change in secondary and tertiary structure of fibrinogen or its thermal stability upon bilirubin binding. The binding site of fibrinogen is not stereospecific for bilirubin and is able to accommodate both bilirubin conformers. A change in absorption maximum of bilirubin occurs upon its interaction with fibrinogen, suggesting an alteration in the conformation of bilirubin to the more cyclic one. Bilirubin exerts antioxidant effect on fibrinogen, preventin...g its carbonylation and aggregation. The presence of bilirubin induces the formation of fibrin with thicker fibres, as assessed by the coagulation assay. Fibrinogen and bilirubin interact at physiological concentrations, bilirubin may act as an antioxidant for fibrinogen and may modulate an important event in haemostasis, which altogether suggests possible physiological relevance of this interaction.

Keywords:
Binding / Circular dichroism / Coagulation / Fluorimetry / Protein oxidation
Source:
International Journal of Biological Macromolecules, 2019, 128, 74-79
Funding / projects:
  • Structural characterisation of the insulin-like growth factor (IGF) binding proteins and IGF receptors, their interactions with other physiological molecules and alterations in metabolic disorders (RS-173042)
  • Molecular properties and modifications of some respiratory and nutritional allergens (RS-172024)
Note:
  • This is the peer-reviewed version of the following article: Gligorijević, Nikola; Minić, Simeon L.; Robajac, Dragana B.; Nikolić, Milan; Ćirković-Veličković, Tanja; Nedić, Olgica, 2019. Characterisation and the effects of bilirubin binding to human fibrinogen. International Journal of Biological Macromolecules. 128, 74-79. https://doi.org/10.1016/j.ijbiomac.2019.01.124
  • Supplementary material: http://cherry.chem.bg.ac.rs/handle/123456789/2937

DOI: 10.1016/j.ijbiomac.2019.01.124

ISSN: 0141-8130

WoS: 000463305100010

Scopus: 2-s2.0-85060455696
[ Google Scholar ]
8
6
URI
https://cherry.chem.bg.ac.rs/handle/123456789/2825
Collections
  • Publikacije
Institution/Community
Hemijski fakultet
TY  - JOUR
AU  - Gligorijević, Nikola
AU  - Minić, Simeon L.
AU  - Robajac, Dragana B.
AU  - Nikolić, Milan
AU  - Ćirković-Veličković, Tanja
AU  - Nedić, Olgica
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/2825
AB  - Fibrinogen, a protein involved in blood coagulation, is very susceptible to oxidation. Oxidation alters its function and usually makes it more thrombogenic. Bilirubin, an end-product of the haem degradation in vertebrates, is known for its antioxidant properties. The present paper describes interaction between fibrinogen and bilirubin, and the influence of bilirubin on the formation of fibrin and protection against oxidation. The binding constant of 4.5 × 104 M−1 was determined for the fibrinogen/bilirubin complex at 37 °C. There is no change in secondary and tertiary structure of fibrinogen or its thermal stability upon bilirubin binding. The binding site of fibrinogen is not stereospecific for bilirubin and is able to accommodate both bilirubin conformers. A change in absorption maximum of bilirubin occurs upon its interaction with fibrinogen, suggesting an alteration in the conformation of bilirubin to the more cyclic one. Bilirubin exerts antioxidant effect on fibrinogen, preventing its carbonylation and aggregation. The presence of bilirubin induces the formation of fibrin with thicker fibres, as assessed by the coagulation assay. Fibrinogen and bilirubin interact at physiological concentrations, bilirubin may act as an antioxidant for fibrinogen and may modulate an important event in haemostasis, which altogether suggests possible physiological relevance of this interaction.
T2  - International Journal of Biological Macromolecules
T1  - Characterisation and the effects of bilirubin binding to human fibrinogen
VL  - 128
SP  - 74
EP  - 79
DO  - 10.1016/j.ijbiomac.2019.01.124
ER  - 
@article{
author = "Gligorijević, Nikola and Minić, Simeon L. and Robajac, Dragana B. and Nikolić, Milan and Ćirković-Veličković, Tanja and Nedić, Olgica",
year = "2019",
abstract = "Fibrinogen, a protein involved in blood coagulation, is very susceptible to oxidation. Oxidation alters its function and usually makes it more thrombogenic. Bilirubin, an end-product of the haem degradation in vertebrates, is known for its antioxidant properties. The present paper describes interaction between fibrinogen and bilirubin, and the influence of bilirubin on the formation of fibrin and protection against oxidation. The binding constant of 4.5 × 104 M−1 was determined for the fibrinogen/bilirubin complex at 37 °C. There is no change in secondary and tertiary structure of fibrinogen or its thermal stability upon bilirubin binding. The binding site of fibrinogen is not stereospecific for bilirubin and is able to accommodate both bilirubin conformers. A change in absorption maximum of bilirubin occurs upon its interaction with fibrinogen, suggesting an alteration in the conformation of bilirubin to the more cyclic one. Bilirubin exerts antioxidant effect on fibrinogen, preventing its carbonylation and aggregation. The presence of bilirubin induces the formation of fibrin with thicker fibres, as assessed by the coagulation assay. Fibrinogen and bilirubin interact at physiological concentrations, bilirubin may act as an antioxidant for fibrinogen and may modulate an important event in haemostasis, which altogether suggests possible physiological relevance of this interaction.",
journal = "International Journal of Biological Macromolecules",
title = "Characterisation and the effects of bilirubin binding to human fibrinogen",
volume = "128",
pages = "74-79",
doi = "10.1016/j.ijbiomac.2019.01.124"
}
Gligorijević, N., Minić, S. L., Robajac, D. B., Nikolić, M., Ćirković-Veličković, T.,& Nedić, O.. (2019). Characterisation and the effects of bilirubin binding to human fibrinogen. in International Journal of Biological Macromolecules, 128, 74-79.
https://doi.org/10.1016/j.ijbiomac.2019.01.124
Gligorijević N, Minić SL, Robajac DB, Nikolić M, Ćirković-Veličković T, Nedić O. Characterisation and the effects of bilirubin binding to human fibrinogen. in International Journal of Biological Macromolecules. 2019;128:74-79.
doi:10.1016/j.ijbiomac.2019.01.124 .
Gligorijević, Nikola, Minić, Simeon L., Robajac, Dragana B., Nikolić, Milan, Ćirković-Veličković, Tanja, Nedić, Olgica, "Characterisation and the effects of bilirubin binding to human fibrinogen" in International Journal of Biological Macromolecules, 128 (2019):74-79,
https://doi.org/10.1016/j.ijbiomac.2019.01.124 . .

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB