Faculty of Chemistry Repository - Cherry
University of Belgrade - Faculty of Chemistry
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Is the R 3 Si Moiety in Metal–Silyl Complexes a Z ligand? An Answer from the Interaction Energy

Thumbnail
2017
hobinh2017.pdf (2.351Mb)
Authors
Binh, Dang Ho
Milovanović, Milan M.
Puertes-Mico, Julia
Hamdaoui, Mustapha
Zarić, Snežana D.
Đukić, Jean-Pierre
Article (Accepted Version)
Metadata
Show full item record
Abstract
The computation of metal-silyl interaction energies indicates the existence of situations in which the silyl group behaves as a Z-type ligand according to the Green method of covalent-bond classification. There is a scale of relative intrinsic silylicity , defined as the ratio of the intrinsic silyl-to-triflate interaction energy of a silyltriflate as a reference compound relative to the silyl-to-metal interaction of given complex, that can reveal in a straightforward manner the propensity of SiR3 groups to behave chemically as metal-bound silylium ions, namely, [SiR3](+). Emblematic cases, either taken from the Cambridge Structural Database (CSD) or constructed for the purpose of this study, were also investigated from the viewpoints of extended transition-state natural orbitals for chemical valence (ETS-NOCV) and quantum theory of atoms in molecules (QTAIM) analyses. It is shown in the case of POBMUPwhich is the iridium 1,3-bis[(di-tert-butylphosphino)oxy]benzene (POCOP) complex isol...ated by Brookhart etal.how slight variations of molecular charge and structure can drastically affect the relative intrinsic silylicity of the SiEt3 group that is weakly bonded to the hydrido-iridium motif.

Keywords:
coordination modes / Si ligands / silanes / silicon / transition metals
Source:
Chemistry - A European Journal, 2017, 23, 67, 17058-17069
Publisher:
  • Wiley-V C H Verlag Gmbh, Weinheim
Funding / projects:
  • Agence Nationale de la Recherche ANR project COCOORDCHEM
  • ANR
  • University of Strasbourg
  • French Government (via Campus France)
  • LABEX Chimie des Systemes Complexes
  • CNRS
Note:
  • This is the peer-reviewed version of the following article: Binh, D. H.; Milovanović, M.; Puertes-Mico, J.; Hamdaoui, M.; Zarić, S. D.; Djukic, J.-P. Is the R 3 Si Moiety in Metal–Silyl Complexes a Z Ligand? An Answer from the Interaction Energy. Chemistry - A European Journal 2017, 23 (67), 17058–17069. https://doi.org/10.1002/chem.201703373
  • Supplementary material: http://cherry.chem.bg.ac.rs/handle/123456789/3056

DOI: 10.1002/chem.201703373

ISSN: 0947-6539

WoS: 000418570000021

Scopus: 2-s2.0-85034102741
[ Google Scholar ]
18
15
URI
https://cherry.chem.bg.ac.rs/handle/123456789/3054
Collections
  • Publikacije
Institution/Community
Hemijski fakultet
TY  - JOUR
AU  - Binh, Dang Ho
AU  - Milovanović, Milan M.
AU  - Puertes-Mico, Julia
AU  - Hamdaoui, Mustapha
AU  - Zarić, Snežana D.
AU  - Đukić, Jean-Pierre
PY  - 2017
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3054
AB  - The computation of metal-silyl interaction energies indicates the existence of situations in which the silyl group behaves as a Z-type ligand according to the Green method of covalent-bond classification. There is a scale of relative intrinsic silylicity , defined as the ratio of the intrinsic silyl-to-triflate interaction energy of a silyltriflate as a reference compound relative to the silyl-to-metal interaction of given complex, that can reveal in a straightforward manner the propensity of SiR3 groups to behave chemically as metal-bound silylium ions, namely, [SiR3](+). Emblematic cases, either taken from the Cambridge Structural Database (CSD) or constructed for the purpose of this study, were also investigated from the viewpoints of extended transition-state natural orbitals for chemical valence (ETS-NOCV) and quantum theory of atoms in molecules (QTAIM) analyses. It is shown in the case of POBMUPwhich is the iridium 1,3-bis[(di-tert-butylphosphino)oxy]benzene (POCOP) complex isolated by Brookhart etal.how slight variations of molecular charge and structure can drastically affect the relative intrinsic silylicity of the SiEt3 group that is weakly bonded to the hydrido-iridium motif.
PB  - Wiley-V C H Verlag Gmbh, Weinheim
T2  - Chemistry - A European Journal
T1  - Is the R 3 Si Moiety in Metal–Silyl Complexes a Z ligand? An Answer from the Interaction Energy
VL  - 23
IS  - 67
SP  - 17058
EP  - 17069
DO  - 10.1002/chem.201703373
ER  - 
@article{
author = "Binh, Dang Ho and Milovanović, Milan M. and Puertes-Mico, Julia and Hamdaoui, Mustapha and Zarić, Snežana D. and Đukić, Jean-Pierre",
year = "2017",
abstract = "The computation of metal-silyl interaction energies indicates the existence of situations in which the silyl group behaves as a Z-type ligand according to the Green method of covalent-bond classification. There is a scale of relative intrinsic silylicity , defined as the ratio of the intrinsic silyl-to-triflate interaction energy of a silyltriflate as a reference compound relative to the silyl-to-metal interaction of given complex, that can reveal in a straightforward manner the propensity of SiR3 groups to behave chemically as metal-bound silylium ions, namely, [SiR3](+). Emblematic cases, either taken from the Cambridge Structural Database (CSD) or constructed for the purpose of this study, were also investigated from the viewpoints of extended transition-state natural orbitals for chemical valence (ETS-NOCV) and quantum theory of atoms in molecules (QTAIM) analyses. It is shown in the case of POBMUPwhich is the iridium 1,3-bis[(di-tert-butylphosphino)oxy]benzene (POCOP) complex isolated by Brookhart etal.how slight variations of molecular charge and structure can drastically affect the relative intrinsic silylicity of the SiEt3 group that is weakly bonded to the hydrido-iridium motif.",
publisher = "Wiley-V C H Verlag Gmbh, Weinheim",
journal = "Chemistry - A European Journal",
title = "Is the R 3 Si Moiety in Metal–Silyl Complexes a Z ligand? An Answer from the Interaction Energy",
volume = "23",
number = "67",
pages = "17058-17069",
doi = "10.1002/chem.201703373"
}
Binh, D. H., Milovanović, M. M., Puertes-Mico, J., Hamdaoui, M., Zarić, S. D.,& Đukić, J.. (2017). Is the R 3 Si Moiety in Metal–Silyl Complexes a Z ligand? An Answer from the Interaction Energy. in Chemistry - A European Journal
Wiley-V C H Verlag Gmbh, Weinheim., 23(67), 17058-17069.
https://doi.org/10.1002/chem.201703373
Binh DH, Milovanović MM, Puertes-Mico J, Hamdaoui M, Zarić SD, Đukić J. Is the R 3 Si Moiety in Metal–Silyl Complexes a Z ligand? An Answer from the Interaction Energy. in Chemistry - A European Journal. 2017;23(67):17058-17069.
doi:10.1002/chem.201703373 .
Binh, Dang Ho, Milovanović, Milan M., Puertes-Mico, Julia, Hamdaoui, Mustapha, Zarić, Snežana D., Đukić, Jean-Pierre, "Is the R 3 Si Moiety in Metal–Silyl Complexes a Z ligand? An Answer from the Interaction Energy" in Chemistry - A European Journal, 23, no. 67 (2017):17058-17069,
https://doi.org/10.1002/chem.201703373 . .

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB