Faculty of Chemistry Repository - Cherry
University of Belgrade - Faculty of Chemistry
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A DFT Study of the Modulation of the Antiaromatic and Open-Shell Character of Dibenzo[a,f]pentalene by Employing Three Strategies: Additional Benzoannulation, BN/CC Isosterism, and Substitution

Authorized Users Only
2019
Authors
Baranac-Stojanović, Marija
Article (Published version)
Metadata
Show full item record
Abstract
Dibenzo[a,f]pentalene ([a,f]DBP) is a highly antiaromatic molecule having appreciable open-shell singlet character in its ground state. In this work, DFT calculations at the B3LYP/6-311+G(d,p) level of theory were performed to explore the efficiency of three strategies, that is, BN/CC isosterism, substitution, and (di)benzoannulation of [a,f]DBP, in controlling its electronic state and (anti)aromaticity. To evaluate the type and extent of the latter, the harmonic oscillator model of aromaticity (HOMA) and aromatic fluctuation (FLU) indices were used, along with the nucleus-independent chemical shift NICS-XY-scan procedure. The results suggest that all three strategies could be employed to produce either the closed-shell system or open-shell species, which may be in the singlet or triplet ground state. Triplet states have been characterized as aromatic, which is in accordance with Baird's rule. All the singlet states were found to have weaker global paratropicity than [a,f]DBP. Addition...al (di)benzo fusion adds local aromatic subunit(s) and mainly retains the topology of the paratropic ring currents of the basic molecule. The substitution of two carbon atoms by the isoelectronic BN pair, or the introduction of substituents, results either in the same type and very similar topology of ring currents as in the parent compound, or leads to (anti)aromatic and nonaromatic subunits. The triplet states of all the examined compounds are also discussed.

Keywords:
aromaticity / density functional calculations / electronic structure / fused-ring systems / substituent effects
Source:
Chemistry - A European Journal, 2019, 25, 41, 9747-9757
Publisher:
  • Wiley
Funding / projects:
  • Experimental and theoretical study of reactivity and biological activity of stereodefined thiazolidines and their synthetic analogues (RS-172020)
Note:
  • Supplementary material: http://cherry.chem.bg.ac.rs/handle/123456789/3291

DOI: 10.1002/chem.201901845

ISSN: 0947-6539

WoS: 000476851000001

Scopus: 2-s2.0-85068929725
[ Google Scholar ]
14
13
URI
https://cherry.chem.bg.ac.rs/handle/123456789/3826
Collections
  • Publikacije
Institution/Community
Hemijski fakultet
TY  - JOUR
AU  - Baranac-Stojanović, Marija
PY  - 2019
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3826
AB  - Dibenzo[a,f]pentalene ([a,f]DBP) is a highly antiaromatic molecule having appreciable open-shell singlet character in its ground state. In this work, DFT calculations at the B3LYP/6-311+G(d,p) level of theory were performed to explore the efficiency of three strategies, that is, BN/CC isosterism, substitution, and (di)benzoannulation of [a,f]DBP, in controlling its electronic state and (anti)aromaticity. To evaluate the type and extent of the latter, the harmonic oscillator model of aromaticity (HOMA) and aromatic fluctuation (FLU) indices were used, along with the nucleus-independent chemical shift NICS-XY-scan procedure. The results suggest that all three strategies could be employed to produce either the closed-shell system or open-shell species, which may be in the singlet or triplet ground state. Triplet states have been characterized as aromatic, which is in accordance with Baird's rule. All the singlet states were found to have weaker global paratropicity than [a,f]DBP. Additional (di)benzo fusion adds local aromatic subunit(s) and mainly retains the topology of the paratropic ring currents of the basic molecule. The substitution of two carbon atoms by the isoelectronic BN pair, or the introduction of substituents, results either in the same type and very similar topology of ring currents as in the parent compound, or leads to (anti)aromatic and nonaromatic subunits. The triplet states of all the examined compounds are also discussed.
PB  - Wiley
T2  - Chemistry - A European Journal
T1  - A DFT Study of the Modulation of the Antiaromatic and Open-Shell Character of Dibenzo[a,f]pentalene by Employing Three Strategies: Additional Benzoannulation, BN/CC Isosterism, and Substitution
VL  - 25
IS  - 41
SP  - 9747
EP  - 9757
DO  - 10.1002/chem.201901845
ER  - 
@article{
author = "Baranac-Stojanović, Marija",
year = "2019",
abstract = "Dibenzo[a,f]pentalene ([a,f]DBP) is a highly antiaromatic molecule having appreciable open-shell singlet character in its ground state. In this work, DFT calculations at the B3LYP/6-311+G(d,p) level of theory were performed to explore the efficiency of three strategies, that is, BN/CC isosterism, substitution, and (di)benzoannulation of [a,f]DBP, in controlling its electronic state and (anti)aromaticity. To evaluate the type and extent of the latter, the harmonic oscillator model of aromaticity (HOMA) and aromatic fluctuation (FLU) indices were used, along with the nucleus-independent chemical shift NICS-XY-scan procedure. The results suggest that all three strategies could be employed to produce either the closed-shell system or open-shell species, which may be in the singlet or triplet ground state. Triplet states have been characterized as aromatic, which is in accordance with Baird's rule. All the singlet states were found to have weaker global paratropicity than [a,f]DBP. Additional (di)benzo fusion adds local aromatic subunit(s) and mainly retains the topology of the paratropic ring currents of the basic molecule. The substitution of two carbon atoms by the isoelectronic BN pair, or the introduction of substituents, results either in the same type and very similar topology of ring currents as in the parent compound, or leads to (anti)aromatic and nonaromatic subunits. The triplet states of all the examined compounds are also discussed.",
publisher = "Wiley",
journal = "Chemistry - A European Journal",
title = "A DFT Study of the Modulation of the Antiaromatic and Open-Shell Character of Dibenzo[a,f]pentalene by Employing Three Strategies: Additional Benzoannulation, BN/CC Isosterism, and Substitution",
volume = "25",
number = "41",
pages = "9747-9757",
doi = "10.1002/chem.201901845"
}
Baranac-Stojanović, M.. (2019). A DFT Study of the Modulation of the Antiaromatic and Open-Shell Character of Dibenzo[a,f]pentalene by Employing Three Strategies: Additional Benzoannulation, BN/CC Isosterism, and Substitution. in Chemistry - A European Journal
Wiley., 25(41), 9747-9757.
https://doi.org/10.1002/chem.201901845
Baranac-Stojanović M. A DFT Study of the Modulation of the Antiaromatic and Open-Shell Character of Dibenzo[a,f]pentalene by Employing Three Strategies: Additional Benzoannulation, BN/CC Isosterism, and Substitution. in Chemistry - A European Journal. 2019;25(41):9747-9757.
doi:10.1002/chem.201901845 .
Baranac-Stojanović, Marija, "A DFT Study of the Modulation of the Antiaromatic and Open-Shell Character of Dibenzo[a,f]pentalene by Employing Three Strategies: Additional Benzoannulation, BN/CC Isosterism, and Substitution" in Chemistry - A European Journal, 25, no. 41 (2019):9747-9757,
https://doi.org/10.1002/chem.201901845 . .

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB