Faculty of Chemistry Repository - Cherry
University of Belgrade - Faculty of Chemistry
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls

Authorized Users Only
2020
Authors
Ilić Đurđić, Karla
Ostafe, Raluca
Đurđević Đelmaš, Aleksandra
Popović, Nikolina
Schillberg, Stefan
Fischer, Rainer
Prodanović, Radivoje
Article (Published version)
Metadata
Show full item record
Abstract
Azo dyes are toxic and carcinogenic synthetic pigments that accumulate as pollutants in aquatic bodies near textile factories. The pigments are structurally diverse, and bioremediation is mostly limited to single dye compounds or related groups. Versatile peroxidase (VP) from Pleurotus eryngii is a heme-containing peroxidase with a broad substrate spectrum that can break down many structurally distinct pollutants, including azo dyes. The utilization of this enzyme could be facilitated by engineering to modify its catalytic activity and substrate range. We used saturation mutagenesis to alter two amino acids in the catalytic tryptophan environment of VP (V160 and A260). Library screening with three azo dyes revealed that these two positions had a significant influence on substrate specificity. We were able to isolate and sequence VP variants with up to 16-fold higher catalytic efficiency for different azo dyes. The same approach could be used to select for VP variants that catalyze the ...degradation of many other types of pollutants. To allow multiple cycles of dye degradation, we immobilized VP on the surface of yeast cells and used washed cell wall fragments after lysis. VP embedded in the cell wall retained ∼70 % of its initial activity after 10 cycles of dye degradation each lasting 12 h, making this platform ideal for the bioremediation of environments contaminated with azo dyes.

Keywords:
Cell wall fragments / Dye degradation / Pleurotus eryngii / Protein engineering / Yeast surface display
Source:
Enzyme and Microbial Technology, 2020, 136, e109509-
Publisher:
  • Elsevier
Funding / projects:
  • Study of structure-function relationships in the plant cell wall and modifications of the wall structure by enzyme engineering (RS-173017)
  • Allergens, antibodies, enzymes and small physiologically important molecules: design, structure, function and relevance (RS-172049)
  • Novel encapsulation and enzyme technologies for designing of new biocatalysts and biologically active compounds targeting enhancement of food quality, safety and competitiveness (RS-46010)
Note:
  • Peer-reviewed manuscript: http://cherry.chem.bg.ac.rs/handle/123456789/3835
  • Supplementary material: http://cherry.chem.bg.ac.rs/handle/123456789/3836

DOI: 10.1016/j.enzmictec.2020.109509

ISSN: 0141-0229

WoS: 000528248400012

Scopus: 2-s2.0-85078512492
[ Google Scholar ]
13
10
URI
https://cherry.chem.bg.ac.rs/handle/123456789/3834
Collections
  • Publikacije
Institution/Community
Hemijski fakultet
TY  - JOUR
AU  - Ilić Đurđić, Karla
AU  - Ostafe, Raluca
AU  - Đurđević Đelmaš, Aleksandra
AU  - Popović, Nikolina
AU  - Schillberg, Stefan
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3834
AB  - Azo dyes are toxic and carcinogenic synthetic pigments that accumulate as pollutants in aquatic bodies near textile factories. The pigments are structurally diverse, and bioremediation is mostly limited to single dye compounds or related groups. Versatile peroxidase (VP) from Pleurotus eryngii is a heme-containing peroxidase with a broad substrate spectrum that can break down many structurally distinct pollutants, including azo dyes. The utilization of this enzyme could be facilitated by engineering to modify its catalytic activity and substrate range. We used saturation mutagenesis to alter two amino acids in the catalytic tryptophan environment of VP (V160 and A260). Library screening with three azo dyes revealed that these two positions had a significant influence on substrate specificity. We were able to isolate and sequence VP variants with up to 16-fold higher catalytic efficiency for different azo dyes. The same approach could be used to select for VP variants that catalyze the degradation of many other types of pollutants. To allow multiple cycles of dye degradation, we immobilized VP on the surface of yeast cells and used washed cell wall fragments after lysis. VP embedded in the cell wall retained ∼70 % of its initial activity after 10 cycles of dye degradation each lasting 12 h, making this platform ideal for the bioremediation of environments contaminated with azo dyes.
PB  - Elsevier
T2  - Enzyme and Microbial Technology
T1  - Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls
VL  - 136
SP  - e109509
DO  - 10.1016/j.enzmictec.2020.109509
ER  - 
@article{
author = "Ilić Đurđić, Karla and Ostafe, Raluca and Đurđević Đelmaš, Aleksandra and Popović, Nikolina and Schillberg, Stefan and Fischer, Rainer and Prodanović, Radivoje",
year = "2020",
abstract = "Azo dyes are toxic and carcinogenic synthetic pigments that accumulate as pollutants in aquatic bodies near textile factories. The pigments are structurally diverse, and bioremediation is mostly limited to single dye compounds or related groups. Versatile peroxidase (VP) from Pleurotus eryngii is a heme-containing peroxidase with a broad substrate spectrum that can break down many structurally distinct pollutants, including azo dyes. The utilization of this enzyme could be facilitated by engineering to modify its catalytic activity and substrate range. We used saturation mutagenesis to alter two amino acids in the catalytic tryptophan environment of VP (V160 and A260). Library screening with three azo dyes revealed that these two positions had a significant influence on substrate specificity. We were able to isolate and sequence VP variants with up to 16-fold higher catalytic efficiency for different azo dyes. The same approach could be used to select for VP variants that catalyze the degradation of many other types of pollutants. To allow multiple cycles of dye degradation, we immobilized VP on the surface of yeast cells and used washed cell wall fragments after lysis. VP embedded in the cell wall retained ∼70 % of its initial activity after 10 cycles of dye degradation each lasting 12 h, making this platform ideal for the bioremediation of environments contaminated with azo dyes.",
publisher = "Elsevier",
journal = "Enzyme and Microbial Technology",
title = "Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls",
volume = "136",
pages = "e109509",
doi = "10.1016/j.enzmictec.2020.109509"
}
Ilić Đurđić, K., Ostafe, R., Đurđević Đelmaš, A., Popović, N., Schillberg, S., Fischer, R.,& Prodanović, R.. (2020). Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls. in Enzyme and Microbial Technology
Elsevier., 136, e109509.
https://doi.org/10.1016/j.enzmictec.2020.109509
Ilić Đurđić K, Ostafe R, Đurđević Đelmaš A, Popović N, Schillberg S, Fischer R, Prodanović R. Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls. in Enzyme and Microbial Technology. 2020;136:e109509.
doi:10.1016/j.enzmictec.2020.109509 .
Ilić Đurđić, Karla, Ostafe, Raluca, Đurđević Đelmaš, Aleksandra, Popović, Nikolina, Schillberg, Stefan, Fischer, Rainer, Prodanović, Radivoje, "Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls" in Enzyme and Microbial Technology, 136 (2020):e109509,
https://doi.org/10.1016/j.enzmictec.2020.109509 . .

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB