Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system
Authors
Ilić Đurđić, Karla
Ece, Selin
Ostafe, Raluca

Vogel, Simon
Schillberg, Stefan

Fischer, Rainer

Prodanović, Radivoje

Article (Accepted Version)
Metadata
Show full item recordAbstract
Pleurotus eryngii wild-type versatile peroxidase (wtVP) oxidizes structurally diverse substrates in an H2O2-dependent manner, but its ability to oxidize many pollutants is limited by suicidal enzyme inactivation in the presence of excess H2O2. To address this drawback, we generated random mutagenesis libraries containing 3 × 106 mutated VP genes and screened for enzymes with higher oxidative stability expressed on the surface of yeast cells. This was achieved by flow cytometry using the substrate fluorescein tyramide. After two rounds of sorting, the percentage of cells expressing variants with improved oxidative stability had increased from 1 % to 56 %. The most stable variants featured 3–5 amino acid substitutions and retained up to 70 % of their initial activity after incubation for 1 h in 30 mM H2O2 (conditions that completely inactivate wtVP). Selected variants were extracted from yeast cell walls and purified for kinetic characterization. We also prepared yeast cell walls with wt...VP and the three most stable VP variants for multiple cycles of azo dye (Reactive black 5) degradation. After 10 cycles of 12 h, two of the variants retained more than 97 % of their initial activity, whereas the activity of wtVP declined by ∼30 %. These results confirm that our high-throughput screening system can improve the oxidative stability of versatile peroxidase, providing a source of novel enzymes for remediation applications.
Keywords:
Yeast surface display / Directed evolution / Hydrogen-peroxide stability / FACSSource:
Biochemical Engineering Journal, 2020, 157Publisher:
- Elsevier
Funding / projects:
- Allergens, antibodies, enzymes and small physiologically important molecules: design, structure, function and relevance (RS-172049)
- Novel encapsulation and enzyme technologies for designing of new biocatalysts and biologically active compounds targeting enhancement of food quality, safety and competitiveness (RS-46010)
Note:
- Supplementary material: http://cherry.chem.bg.ac.rs/handle/123456789/3899
- This is the peer-reviewed version of the article: Ilić Đurđić, K.; Ece, S.; Ostafe, R.; Vogel, S.; Schillberg, S.; Fischer, R.; Prodanović, R. Improvement in Oxidative Stability of Versatile Peroxidase by Flow Cytometry-Based High-Throughput Screening System. Biochemical Engineering Journal 2020, 157. https://doi.org/10.1016/j.bej.2020.107555
DOI: 10.1016/j.bej.2020.107555
ISSN: 1369-703X
WoS: 000527325100023
Scopus: 2-s2.0-85081216986
Collections
Institution/Community
Hemijski fakultet / Faculty of ChemistryTY - JOUR AU - Ilić Đurđić, Karla AU - Ece, Selin AU - Ostafe, Raluca AU - Vogel, Simon AU - Schillberg, Stefan AU - Fischer, Rainer AU - Prodanović, Radivoje PY - 2020 UR - https://cherry.chem.bg.ac.rs/handle/123456789/3898 AB - Pleurotus eryngii wild-type versatile peroxidase (wtVP) oxidizes structurally diverse substrates in an H2O2-dependent manner, but its ability to oxidize many pollutants is limited by suicidal enzyme inactivation in the presence of excess H2O2. To address this drawback, we generated random mutagenesis libraries containing 3 × 106 mutated VP genes and screened for enzymes with higher oxidative stability expressed on the surface of yeast cells. This was achieved by flow cytometry using the substrate fluorescein tyramide. After two rounds of sorting, the percentage of cells expressing variants with improved oxidative stability had increased from 1 % to 56 %. The most stable variants featured 3–5 amino acid substitutions and retained up to 70 % of their initial activity after incubation for 1 h in 30 mM H2O2 (conditions that completely inactivate wtVP). Selected variants were extracted from yeast cell walls and purified for kinetic characterization. We also prepared yeast cell walls with wtVP and the three most stable VP variants for multiple cycles of azo dye (Reactive black 5) degradation. After 10 cycles of 12 h, two of the variants retained more than 97 % of their initial activity, whereas the activity of wtVP declined by ∼30 %. These results confirm that our high-throughput screening system can improve the oxidative stability of versatile peroxidase, providing a source of novel enzymes for remediation applications. PB - Elsevier T2 - Biochemical Engineering Journal T1 - Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system VL - 157 DO - 10.1016/j.bej.2020.107555 ER -
@article{ author = "Ilić Đurđić, Karla and Ece, Selin and Ostafe, Raluca and Vogel, Simon and Schillberg, Stefan and Fischer, Rainer and Prodanović, Radivoje", year = "2020", abstract = "Pleurotus eryngii wild-type versatile peroxidase (wtVP) oxidizes structurally diverse substrates in an H2O2-dependent manner, but its ability to oxidize many pollutants is limited by suicidal enzyme inactivation in the presence of excess H2O2. To address this drawback, we generated random mutagenesis libraries containing 3 × 106 mutated VP genes and screened for enzymes with higher oxidative stability expressed on the surface of yeast cells. This was achieved by flow cytometry using the substrate fluorescein tyramide. After two rounds of sorting, the percentage of cells expressing variants with improved oxidative stability had increased from 1 % to 56 %. The most stable variants featured 3–5 amino acid substitutions and retained up to 70 % of their initial activity after incubation for 1 h in 30 mM H2O2 (conditions that completely inactivate wtVP). Selected variants were extracted from yeast cell walls and purified for kinetic characterization. We also prepared yeast cell walls with wtVP and the three most stable VP variants for multiple cycles of azo dye (Reactive black 5) degradation. After 10 cycles of 12 h, two of the variants retained more than 97 % of their initial activity, whereas the activity of wtVP declined by ∼30 %. These results confirm that our high-throughput screening system can improve the oxidative stability of versatile peroxidase, providing a source of novel enzymes for remediation applications.", publisher = "Elsevier", journal = "Biochemical Engineering Journal", title = "Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system", volume = "157", doi = "10.1016/j.bej.2020.107555" }
Ilić Đurđić, K., Ece, S., Ostafe, R., Vogel, S., Schillberg, S., Fischer, R.,& Prodanović, R.. (2020). Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system. in Biochemical Engineering Journal Elsevier., 157. https://doi.org/10.1016/j.bej.2020.107555
Ilić Đurđić K, Ece S, Ostafe R, Vogel S, Schillberg S, Fischer R, Prodanović R. Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system. in Biochemical Engineering Journal. 2020;157. doi:10.1016/j.bej.2020.107555 .
Ilić Đurđić, Karla, Ece, Selin, Ostafe, Raluca, Vogel, Simon, Schillberg, Stefan, Fischer, Rainer, Prodanović, Radivoje, "Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system" in Biochemical Engineering Journal, 157 (2020), https://doi.org/10.1016/j.bej.2020.107555 . .