Faculty of Chemistry Repository - Cherry
University of Belgrade - Faculty of Chemistry
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Cherry
  • Hemijski fakultet / Faculty of Chemistry
  • Publikacije / Publications
  • View Item
  •   Cherry
  • Hemijski fakultet / Faculty of Chemistry
  • Publikacije / Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Flow cytometry-based system for screening of lignin peroxidase mutants with higher oxidative stability

Authorized Users Only
2020
Authors
Ilić Đurđić, Karla
Ece, Selin
Ostafe, Raluca
Vogel, Simon
Balaž, Ana Marija
Schillberg, Stefan
Fischer, Rainer
Prodanović, Radivoje
Article (Published version)
Metadata
Show full item record
Abstract
Lignin peroxidase (LiP) is a heme-containing oxidoreductase that oxidizes structurally diverse substrates in an H2O2-dependent manner. Its ability to oxidize many pollutants makes it suitable for bioremediation applications and an ideal candidate for optimization by mutagenesis and selection. In order to increase oxidative stability of LiP we generated a random mutagenesis library comprising 106 mutated LiP genes and screened for expressed enzymes with higher than wild-type activity after incubation in 30 mM H2O2 by flow cytometry with fluorescein-tyramide as a substrate. To preserve the genotype-phenotype connection, the LiP mutants were displayed on the yeast cell surface. Two rounds of sorting were performed, recovered colonies were then screened in microtiter plates, and activity analysis revealed a significant increase in the percentage of cells expressing LiP variants with higher oxidative stability than wtLiP. Two rounds of sorting increased the proportion of more-stable variant...s from 1.4% in the original library to 52.3%. The most stable variants after two rounds of sorting featured between two and four mutations and retained up to 80% of initial activity after 1 h incubation in 30 mM H2O2. We for the first-time applied flow cytometry for screening of any ligninolytic peroxidase library. Obtained results suggest that developed system may be applied for improvement of industrially important characteristics of lignin peroxidase.

Keywords:
Chimera / Directed evolution / Fluorescence activated cell sorting / Hydrogen-peroxide stability / Yeast surface display
Source:
Journal of Bioscience and Bioengineering, 2020, 129, 6, 664-671
Publisher:
  • Elsevier
Funding / projects:
  • Novel encapsulation and enzyme technologies for designing of new biocatalysts and biologically active compounds targeting enhancement of food quality, safety and competitiveness (RS-46010)
  • Study of structure-function relationships in the plant cell wall and modifications of the wall structure by enzyme engineering (RS-173017)
  • Allergens, antibodies, enzymes and small physiologically important molecules: design, structure, function and relevance (RS-172049)

DOI: 10.1016/j.jbiosc.2019.12.009

ISSN: 1389-1723

WoS: 000614233200003

Scopus: 2-s2.0-85079014891
[ Google Scholar ]
8
1
URI
https://cherry.chem.bg.ac.rs/handle/123456789/3974
Collections
  • Publikacije / Publications
Institution/Community
Hemijski fakultet / Faculty of Chemistry
TY  - JOUR
AU  - Ilić Đurđić, Karla
AU  - Ece, Selin
AU  - Ostafe, Raluca
AU  - Vogel, Simon
AU  - Balaž, Ana Marija
AU  - Schillberg, Stefan
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2020
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/3974
AB  - Lignin peroxidase (LiP) is a heme-containing oxidoreductase that oxidizes structurally diverse substrates in an H2O2-dependent manner. Its ability to oxidize many pollutants makes it suitable for bioremediation applications and an ideal candidate for optimization by mutagenesis and selection. In order to increase oxidative stability of LiP we generated a random mutagenesis library comprising 106 mutated LiP genes and screened for expressed enzymes with higher than wild-type activity after incubation in 30 mM H2O2 by flow cytometry with fluorescein-tyramide as a substrate. To preserve the genotype-phenotype connection, the LiP mutants were displayed on the yeast cell surface. Two rounds of sorting were performed, recovered colonies were then screened in microtiter plates, and activity analysis revealed a significant increase in the percentage of cells expressing LiP variants with higher oxidative stability than wtLiP. Two rounds of sorting increased the proportion of more-stable variants from 1.4% in the original library to 52.3%. The most stable variants after two rounds of sorting featured between two and four mutations and retained up to 80% of initial activity after 1 h incubation in 30 mM H2O2. We for the first-time applied flow cytometry for screening of any ligninolytic peroxidase library. Obtained results suggest that developed system may be applied for improvement of industrially important characteristics of lignin peroxidase.
PB  - Elsevier
T2  - Journal of Bioscience and Bioengineering
T1  - Flow cytometry-based system for screening of lignin peroxidase mutants with higher oxidative stability
VL  - 129
IS  - 6
SP  - 664
EP  - 671
DO  - 10.1016/j.jbiosc.2019.12.009
ER  - 
@article{
author = "Ilić Đurđić, Karla and Ece, Selin and Ostafe, Raluca and Vogel, Simon and Balaž, Ana Marija and Schillberg, Stefan and Fischer, Rainer and Prodanović, Radivoje",
year = "2020",
abstract = "Lignin peroxidase (LiP) is a heme-containing oxidoreductase that oxidizes structurally diverse substrates in an H2O2-dependent manner. Its ability to oxidize many pollutants makes it suitable for bioremediation applications and an ideal candidate for optimization by mutagenesis and selection. In order to increase oxidative stability of LiP we generated a random mutagenesis library comprising 106 mutated LiP genes and screened for expressed enzymes with higher than wild-type activity after incubation in 30 mM H2O2 by flow cytometry with fluorescein-tyramide as a substrate. To preserve the genotype-phenotype connection, the LiP mutants were displayed on the yeast cell surface. Two rounds of sorting were performed, recovered colonies were then screened in microtiter plates, and activity analysis revealed a significant increase in the percentage of cells expressing LiP variants with higher oxidative stability than wtLiP. Two rounds of sorting increased the proportion of more-stable variants from 1.4% in the original library to 52.3%. The most stable variants after two rounds of sorting featured between two and four mutations and retained up to 80% of initial activity after 1 h incubation in 30 mM H2O2. We for the first-time applied flow cytometry for screening of any ligninolytic peroxidase library. Obtained results suggest that developed system may be applied for improvement of industrially important characteristics of lignin peroxidase.",
publisher = "Elsevier",
journal = "Journal of Bioscience and Bioengineering",
title = "Flow cytometry-based system for screening of lignin peroxidase mutants with higher oxidative stability",
volume = "129",
number = "6",
pages = "664-671",
doi = "10.1016/j.jbiosc.2019.12.009"
}
Ilić Đurđić, K., Ece, S., Ostafe, R., Vogel, S., Balaž, A. M., Schillberg, S., Fischer, R.,& Prodanović, R.. (2020). Flow cytometry-based system for screening of lignin peroxidase mutants with higher oxidative stability. in Journal of Bioscience and Bioengineering
Elsevier., 129(6), 664-671.
https://doi.org/10.1016/j.jbiosc.2019.12.009
Ilić Đurđić K, Ece S, Ostafe R, Vogel S, Balaž AM, Schillberg S, Fischer R, Prodanović R. Flow cytometry-based system for screening of lignin peroxidase mutants with higher oxidative stability. in Journal of Bioscience and Bioengineering. 2020;129(6):664-671.
doi:10.1016/j.jbiosc.2019.12.009 .
Ilić Đurđić, Karla, Ece, Selin, Ostafe, Raluca, Vogel, Simon, Balaž, Ana Marija, Schillberg, Stefan, Fischer, Rainer, Prodanović, Radivoje, "Flow cytometry-based system for screening of lignin peroxidase mutants with higher oxidative stability" in Journal of Bioscience and Bioengineering, 129, no. 6 (2020):664-671,
https://doi.org/10.1016/j.jbiosc.2019.12.009 . .

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB