Faculty of Chemistry Repository - Cherry
University of Belgrade - Faculty of Chemistry
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   Faculty of Chemistry Repository - Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
  •   Faculty of Chemistry Repository - Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The effects of ionizing radiation on the structure and antioxidative and metal-binding capacity of the cell wall of microalga Chlorella sorokiniana

Authorized Users Only
2020
Authors
Danilović Luković, Jelena
Zechmann, Bernd
Jevtović, Mima
Bogdanović Pristov, Jelena
Stanić, Marina
Marco Lizzul, Alessandro
Pittman, Jon K.
Spasojević, Ivan
Article (Published version)
Metadata
Show full item record
Abstract
The impact of ionizing radiation on microorganisms such as microalgae is a topic of increasing importance for understanding the dynamics of aquatic ecosystems in response to environmental radiation, and for the development of efficient approaches for bioremediation of mining and nuclear power plants wastewaters. Currently, nothing is known about the effects of ionizing radiation on the microalgal cell wall, which represents the first line of defence against chemical and physical environmental stresses. Using various microscopy, spectroscopy and biochemical techniques we show that the unicellular alga Chlorella sorokiniana elicits a fast response to ionizing radiation. Within one day after irradiation with doses of 1–5 Gy, the fibrilar layer of the cell wall became thicker, the fraction of uronic acids was higher, and the capacity to remove the main reactive product of water radiolysis increased. In addition, the isolated cell wall fraction showed significant binding capacity for Cu2+, ...Mn2+, and Cr3+. The irradiation further increased the binding capacity for Cu2+, which appears to be mainly bound to glucosamine moieties within a chitosan-like polymer in the outer rigid layer of the wall. These results imply that the cell wall represents a dynamic structure that is involved in the protective response of microalgae to ionizing radiation. It appears that microalgae may exhibit a significant control of metal mobility in aquatic ecosystems via biosorption by the cell wall matrix.

Keywords:
Alga / Cell wall / Copper / Radiation
Source:
Chemosphere, 2020, 260, 127553-
Publisher:
  • Elsevier
Projects:
  • The NATO Science for Peace and Security Programme , Project number G5320

DOI: 10.1016/j.chemosphere.2020.127553

ISSN: 0045-6535

WoS: 000575197000040

Scopus: 2-s2.0-85087709447
[ Google Scholar ]
URI
http://cherry.chem.bg.ac.rs/handle/123456789/4241
Collections
  • Publikacije
Institution
Hemijski fakultet

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

OpenAIRERCUB