Show simple item record

dc.creatorLačnjevac, Uroš
dc.creatorVasilić, Rastko
dc.creatorDobrota, Ana
dc.creatorĐurđić, Slađana
dc.creatorTomanec, Ondřej
dc.creatorZbořil, Radek
dc.creatorMohajernia, Shiva
dc.creatorNguyen, Nhat Truong
dc.creatorSkorodumova, Natalia
dc.creatorManojlović, Dragan D.
dc.creatorElezović, Nevenka
dc.creatorPašti, Igor
dc.creatorSchmuki, Patrik
dc.date.accessioned2020-12-13T19:38:17Z
dc.date.available2020-12-13T19:38:17Z
dc.date.issued2020
dc.identifier.issn2050-7488
dc.identifier.urihttp://cherry.chem.bg.ac.rs/handle/123456789/4288
dc.description.abstractDeveloping ultraefficient electrocatalytic materials for the hydrogen evolution reaction (HER) with low content of expensive platinum group metals (PGMs) via low-energy-input procedures is the key to the successful commercialization of green water electrolysis technologies for sustainable production of high-purity hydrogen. In this study, we report a facile room-temperature synthesis of ultrafine metallic Ir nanoparticles on conductive, proton-intercalated TiO2 nanotube (H-TNT) arrays via galvanic displacement. A series of experiments demonstrate that a controlled transformation of the H-TNT surface microstructure from neat open-top tubes to disordered nanostripe bundles (“nanograss”) is highly beneficial for providing an abundance of exposed Ir active sites. Consequently, for nanograss-engineered composites, outstanding HER activity metrics are achieved even at very low Ir(III) precursor concentrations. An optimum Ir@TNT cathode loaded with 5.7 μgIr cm−2 exhibits an overpotential of −63 mV at −100 mA cm−2 and a mass activity of 34 A mgIr−1 at −80 mV under acidic conditions, along with excellent catalytic durability and structural integrity. Density functional theory (DFT) simulations reveal that the hydrogen-rich TiO2 surface not only stabilizes the deposited Ir and weakens its H binding strength to a moderate intensity, but also actively takes part in the HER mechanism by refreshing the Ir catalytic sites near the Ir|H–TiO2 interface, thus substantially promoting H2 generation. The comprehensive characterization combined with theory provides an in-depth understanding of the electrocatalytic behavior of H-TNT supported PGM nanoparticles and demonstrates their high potential as competitive electrocatalyst systems for the HER.
dc.languageen
dc.publisherRoyal Society of Chemistry
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/172054/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/inst-2020/200053/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/inst-2020/200146/RS//
dc.relationBilateral cooperation project between the Republic of Serbia and the Federal Republic of Germany (project years 2020–2021, No. 22), as well as the ERC and DFG.
dc.relationThe computations and data handling were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC) at National Supercomputer Centre (NSC) at Link¨oping University, partially funded by the Swedish Research Council through grant agreement No. 2018-05973.
dc.relationThe networking support from COST action MP1407 is greatly appreciated.
dc.rightsrestrictedAccess
dc.sourceJournal of Materials Chemistry A
dc.titleHigh-performance hydrogen evolution electrocatalysis using proton-intercalated TiO2 nanotube arrays as interactive supports for Ir nanoparticles
dc.typearticleen
dc.rights.licenseARR
dcterms.abstractНгуyен, Нхат Труонг; Скородумова, Наталиа; Елезовић, Невенка; Пашти, Игор; Сцхмуки, Патрик; Ђурђић, Слађана; Доброта, Aна; Василић, Растко; Лачњевац, Урош; Манојловић, Драган Д.; Томанец, Ондřеј; Збоřил, Радек; Мохајерниа, Схива;
dc.citation.volume8
dc.citation.issue43
dc.citation.spage22773
dc.citation.epage22790
dc.identifier.wos000589418400026
dc.identifier.doi10.1039/D0TA07492F
dc.citation.rankM21~
dc.type.versionpublishedVersion
dc.identifier.scopus2-s2.0-85096105811


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record