Faculty of Chemistry Repository - Cherry
University of Belgrade - Faculty of Chemistry
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   Faculty of Chemistry Repository - Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
  •   Faculty of Chemistry Repository - Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improvement of d–d interactions in density functional tight binding for transition metal ions with a ligand field model: assessment of a DFTB3+U model on nickel coordination compounds

Authorized Users Only
2020
Authors
Stepanović, Stepan
Lai, Rui
Elstner, Marcus
Gruden, Maja
Garcia-Fernandez, Pablo
Cui, Qiang
Article (Published version)
Metadata
Show full item record
Abstract
To improve the description of interactions among the localized d, f electrons in transition metals, we have introduced a ligand-field motivated contribution into the Density Functional Tight Binding (DFTB) model. Referred to as DFTB3+U, the approach treats the d, f electron repulsions with rotationally invariant orbital–orbital interactions and a Hartree–Fock model; this represents a major conceptual improvement over the original DFTB3 approach, which treats the d, f-shell interactions in a highly averaged fashion without orbital level of description. The DFTB3+U approach is tested using a series of nickel compounds that feature Ni(II) and Ni(III) oxidation states. By using parameters developed with the original DFTB3 Hamiltonian and empirical +U parameters (F0/2/4 Slater integrals), we observe that the DFTB3+U model indeed provides substantial improvements over the original DFTB3 model for a number of properties of the nickel compounds, including the population and spin polarization o...f the d-shell, nature of the frontier orbitals, ligand field splitting and the energy different between low and high spin states at OPBE optimized structures. This proof-of-concept study suggests that with self-consistent parameterization of the electronic and +U parameters, the DFTB3+U model can develop into a promising model that can be used to efficiently study reactive events involving transition metals ion condensed phase systems. The methodology can be integrated with other approximate QM methods as well, such as the extended tight binding (xTB) approach.

Source:
Physical Chemistry Chemical Physics, 2020, 22, 46, 27084-27095
Publisher:
  • American Chemical Society
Projects:
  • Serbian–German collaboration project (DAAD) number 451-03-01038/2015-09/7 (to MG and ME).
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
  • NIH grant R01-GM106443 (QC) and the Spanish Ministry of Economy and Competitiveness through Grant PGC2018-096955-B-C41 (PGF).

DOI: 10.1039/D0CP04694A

ISSN: 1463-9076

WoS: 000597256600040

[ Google Scholar ]
URI
http://cherry.chem.bg.ac.rs/handle/123456789/4299
Collections
  • Publikacije
Institution
Hemijski fakultet

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

OpenAIRERCUB