Faculty of Chemistry Repository - Cherry
University of Belgrade - Faculty of Chemistry
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessing the potential of para-donor and para-acceptor substituted 5-benzylidenebarbituric acid derivatives as push–pull electronic systems: Experimental and quantum chemical study

Authorized Users Only
2021
Authors
Stojiljković, Ivana N.
Rančić, Milica
Marinković, Aleksandar
Cvijetić, Ilija
Milčić, Miloš K.
Article (Published version)
Metadata
Show full item record
Abstract
Electronic interactions in donor-π-linker-acceptor systems with barbituric acid as an electron acceptor and possible electron donor were investigated to screen promising candidates with a push–pull character based on experimental and quantum chemical studies. The tautomeric properties of 5-benzylidenebarbituric acid derivatives were studied with NMR spectra, spectrophotometric determination of the pKa values, and quantum chemical calculations. Linear solvation energy relationships (LSER) and linear free energy relationships (LFER) were applied to the spectral data - UV frequencies and 13C NMR chemical shifts. The experimental studies of the nature of the ground and excited state of investigated compounds were successfully interpreted using a computational chemistry approach including ab initio MP2 geometry optimization and time-dependent DFT calculations of excited states. Quantification of the push–pull character of barbituric acid derivatives was performed by the 13CNMR chemical shif...t differences, Mayer π bond order analysis, hole-electron distribution analysis, and calculations of intramolecular charge transfer (ICT) indices. The results obtained show, that when coupled with a strong electron-donor, barbituric acid can act as the electron-acceptor in push–pull systems, and when coupled with a strong electron-acceptor, barbituric acid can act as the weak electron-donor.

Keywords:
Barbituric acid derivatives / Hole-electron distribution analysis / ICT process / LFER analysis / Push–pull systems
Source:
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 253, 119576-
Publisher:
  • Elsevier
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
Note:
  • Supplementary material: https://cherry.chem.bg.ac.rs/handle/123456789/4421
Related info:
  • Version of
    https://doi.org/10.1016/j.saa.2021.119576
  • Referenced by
    https://cherry.chem.bg.ac.rs/handle/123456789/4421

DOI: 10.1016/j.saa.2021.119576

ISSN: 1386-1425

WoS: 000635167000012

Scopus: 2-s2.0-85101104882
[ Google Scholar ]
URI
https://www.sciencedirect.com/science/article/pii/S1386142521001529
https://cherry.chem.bg.ac.rs/handle/123456789/4420
Collections
  • Publikacije
Institution/Community
Hemijski fakultet
TY  - JOUR
AU  - Stojiljković, Ivana N.
AU  - Rančić, Milica
AU  - Marinković, Aleksandar
AU  - Cvijetić, Ilija
AU  - Milčić, Miloš K.
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S1386142521001529
UR  - https://cherry.chem.bg.ac.rs/handle/123456789/4420
AB  - Electronic interactions in donor-π-linker-acceptor systems with barbituric acid as an electron acceptor and possible electron donor were investigated to screen promising candidates with a push–pull character based on experimental and quantum chemical studies. The tautomeric properties of 5-benzylidenebarbituric acid derivatives were studied with NMR spectra, spectrophotometric determination of the pKa values, and quantum chemical calculations. Linear solvation energy relationships (LSER) and linear free energy relationships (LFER) were applied to the spectral data - UV frequencies and 13C NMR chemical shifts. The experimental studies of the nature of the ground and excited state of investigated compounds were successfully interpreted using a computational chemistry approach including ab initio MP2 geometry optimization and time-dependent DFT calculations of excited states. Quantification of the push–pull character of barbituric acid derivatives was performed by the 13CNMR chemical shift differences, Mayer π bond order analysis, hole-electron distribution analysis, and calculations of intramolecular charge transfer (ICT) indices. The results obtained show, that when coupled with a strong electron-donor, barbituric acid can act as the electron-acceptor in push–pull systems, and when coupled with a strong electron-acceptor, barbituric acid can act as the weak electron-donor.
PB  - Elsevier
T2  - Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
T2  - Spectrochimica Acta Part A: Molecular and Biomolecular SpectroscopySpectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
T1  - Assessing the potential of para-donor and para-acceptor substituted 5-benzylidenebarbituric acid derivatives as push–pull electronic systems: Experimental and quantum chemical study
VL  - 253
SP  - 119576
DO  - 10.1016/j.saa.2021.119576
ER  - 
@article{
author = "Stojiljković, Ivana N. and Rančić, Milica and Marinković, Aleksandar and Cvijetić, Ilija and Milčić, Miloš K.",
year = "2021",
abstract = "Electronic interactions in donor-π-linker-acceptor systems with barbituric acid as an electron acceptor and possible electron donor were investigated to screen promising candidates with a push–pull character based on experimental and quantum chemical studies. The tautomeric properties of 5-benzylidenebarbituric acid derivatives were studied with NMR spectra, spectrophotometric determination of the pKa values, and quantum chemical calculations. Linear solvation energy relationships (LSER) and linear free energy relationships (LFER) were applied to the spectral data - UV frequencies and 13C NMR chemical shifts. The experimental studies of the nature of the ground and excited state of investigated compounds were successfully interpreted using a computational chemistry approach including ab initio MP2 geometry optimization and time-dependent DFT calculations of excited states. Quantification of the push–pull character of barbituric acid derivatives was performed by the 13CNMR chemical shift differences, Mayer π bond order analysis, hole-electron distribution analysis, and calculations of intramolecular charge transfer (ICT) indices. The results obtained show, that when coupled with a strong electron-donor, barbituric acid can act as the electron-acceptor in push–pull systems, and when coupled with a strong electron-acceptor, barbituric acid can act as the weak electron-donor.",
publisher = "Elsevier",
journal = "Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular SpectroscopySpectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy",
title = "Assessing the potential of para-donor and para-acceptor substituted 5-benzylidenebarbituric acid derivatives as push–pull electronic systems: Experimental and quantum chemical study",
volume = "253",
pages = "119576",
doi = "10.1016/j.saa.2021.119576"
}
Stojiljković, I. N., Rančić, M., Marinković, A., Cvijetić, I.,& Milčić, M. K.. (2021). Assessing the potential of para-donor and para-acceptor substituted 5-benzylidenebarbituric acid derivatives as push–pull electronic systems: Experimental and quantum chemical study. in Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Elsevier., 253, 119576.
https://doi.org/10.1016/j.saa.2021.119576
Stojiljković IN, Rančić M, Marinković A, Cvijetić I, Milčić MK. Assessing the potential of para-donor and para-acceptor substituted 5-benzylidenebarbituric acid derivatives as push–pull electronic systems: Experimental and quantum chemical study. in Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2021;253:119576.
doi:10.1016/j.saa.2021.119576 .
Stojiljković, Ivana N., Rančić, Milica, Marinković, Aleksandar, Cvijetić, Ilija, Milčić, Miloš K., "Assessing the potential of para-donor and para-acceptor substituted 5-benzylidenebarbituric acid derivatives as push–pull electronic systems: Experimental and quantum chemical study" in Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 253 (2021):119576,
https://doi.org/10.1016/j.saa.2021.119576 . .

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB