Supplementary data for the article: Orlić, J.; Gržetić, I.; Goessler, W.; Braeuer, S.; Čáslavský, J.; Pořízka, J.; Ilijević, K. Artificial Cellulose Standards as Calibration Standards for Wavelength-Dispersive X-Ray Fluorescence Analysis of Elements in Plant Samples. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2021, 502, 106–117. https://doi.org/10.1016/j.nimb.2021.06.012.
Authors
Orlić, Jovana
Gržetić, Ivan

Goessler, Walter
Braeuer, Simone
Čáslavský, Josef
Pořízka, Jaromír
Ilijević, Konstantin

Dataset (Published version)
Metadata
Show full item recordAbstract
This research explores the possibilities and limitations of WD-XRF, applied as a method for quantification of 20 elements in plant material, using spiked cellulose standards for calibration. Three different analytical methods were investigated: 1) standards created from pure spiked cellulose; 2) spiked cellulose mixed with 20% of binder and 3) spiked cellulose applied as a thin layer on an inert carrier. Sensitivity, linearity, limit of detection, limit of quantification, repeatability, intralaboratory reproducibility, and accuracy were determined and compared. The accuracy of the investigated methods was tested by analysis of standard reference materials and comparison with other routinely used analytical techniques (ICP-OES and ICP-MS). The comparison included real plant samples which were collected from the environment characterized by different pollution levels. The accuracy of the semiquantitative standardless method was also considered and compared with other investigated methods.... Tested methods can be very precise, with good intralaboratory reproducibility over wide linear range.
Keywords:
Accuracy / Green chemistry / Method comparison / Precision / Sample preparation / WD-XRFSource:
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2021Publisher:
- Elsevier
Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
- Geochemical investigations of sedimentary rocks - fossil fuels and environmental pollutants (RS-176006)
Note:
- Supplementary material for: https://doi.org/10.1016/j.nimb.2021.06.012
- Related to published version: https://cherry.chem.bg.ac.rs/handle/123456789/4614
- Related to accepted version: https://cherry.chem.bg.ac.rs/handle/123456789/5760
Related info:
- Referenced by
https://cherry.chem.bg.ac.rs/handle/123456789/5760 - Referenced by
https://cherry.chem.bg.ac.rs/handle/123456789/4614 - Referenced by
https://doi.org/10.1016/j.nimb.2021.06.012
URI
https://www.sciencedirect.com/science/article/pii/S0168583X21002238https://cherry.chem.bg.ac.rs/handle/123456789/4615
Collections
Institution/Community
Hemijski fakultetTY - DATA AU - Orlić, Jovana AU - Gržetić, Ivan AU - Goessler, Walter AU - Braeuer, Simone AU - Čáslavský, Josef AU - Pořízka, Jaromír AU - Ilijević, Konstantin PY - 2021 UR - https://www.sciencedirect.com/science/article/pii/S0168583X21002238 UR - https://cherry.chem.bg.ac.rs/handle/123456789/4615 AB - This research explores the possibilities and limitations of WD-XRF, applied as a method for quantification of 20 elements in plant material, using spiked cellulose standards for calibration. Three different analytical methods were investigated: 1) standards created from pure spiked cellulose; 2) spiked cellulose mixed with 20% of binder and 3) spiked cellulose applied as a thin layer on an inert carrier. Sensitivity, linearity, limit of detection, limit of quantification, repeatability, intralaboratory reproducibility, and accuracy were determined and compared. The accuracy of the investigated methods was tested by analysis of standard reference materials and comparison with other routinely used analytical techniques (ICP-OES and ICP-MS). The comparison included real plant samples which were collected from the environment characterized by different pollution levels. The accuracy of the semiquantitative standardless method was also considered and compared with other investigated methods. Tested methods can be very precise, with good intralaboratory reproducibility over wide linear range. PB - Elsevier T2 - Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms T1 - Supplementary data for the article: Orlić, J.; Gržetić, I.; Goessler, W.; Braeuer, S.; Čáslavský, J.; Pořízka, J.; Ilijević, K. Artificial Cellulose Standards as Calibration Standards for Wavelength-Dispersive X-Ray Fluorescence Analysis of Elements in Plant Samples. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2021, 502, 106–117. https://doi.org/10.1016/j.nimb.2021.06.012. UR - https://hdl.handle.net/21.15107/rcub_cherry_4615 ER -
@misc{ author = "Orlić, Jovana and Gržetić, Ivan and Goessler, Walter and Braeuer, Simone and Čáslavský, Josef and Pořízka, Jaromír and Ilijević, Konstantin", year = "2021", abstract = "This research explores the possibilities and limitations of WD-XRF, applied as a method for quantification of 20 elements in plant material, using spiked cellulose standards for calibration. Three different analytical methods were investigated: 1) standards created from pure spiked cellulose; 2) spiked cellulose mixed with 20% of binder and 3) spiked cellulose applied as a thin layer on an inert carrier. Sensitivity, linearity, limit of detection, limit of quantification, repeatability, intralaboratory reproducibility, and accuracy were determined and compared. The accuracy of the investigated methods was tested by analysis of standard reference materials and comparison with other routinely used analytical techniques (ICP-OES and ICP-MS). The comparison included real plant samples which were collected from the environment characterized by different pollution levels. The accuracy of the semiquantitative standardless method was also considered and compared with other investigated methods. Tested methods can be very precise, with good intralaboratory reproducibility over wide linear range.", publisher = "Elsevier", journal = "Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms", title = "Supplementary data for the article: Orlić, J.; Gržetić, I.; Goessler, W.; Braeuer, S.; Čáslavský, J.; Pořízka, J.; Ilijević, K. Artificial Cellulose Standards as Calibration Standards for Wavelength-Dispersive X-Ray Fluorescence Analysis of Elements in Plant Samples. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2021, 502, 106–117. https://doi.org/10.1016/j.nimb.2021.06.012.", url = "https://hdl.handle.net/21.15107/rcub_cherry_4615" }
Orlić, J., Gržetić, I., Goessler, W., Braeuer, S., Čáslavský, J., Pořízka, J.,& Ilijević, K.. (2021). Supplementary data for the article: Orlić, J.; Gržetić, I.; Goessler, W.; Braeuer, S.; Čáslavský, J.; Pořízka, J.; Ilijević, K. Artificial Cellulose Standards as Calibration Standards for Wavelength-Dispersive X-Ray Fluorescence Analysis of Elements in Plant Samples. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2021, 502, 106–117. https://doi.org/10.1016/j.nimb.2021.06.012.. in Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms Elsevier.. https://hdl.handle.net/21.15107/rcub_cherry_4615
Orlić J, Gržetić I, Goessler W, Braeuer S, Čáslavský J, Pořízka J, Ilijević K. Supplementary data for the article: Orlić, J.; Gržetić, I.; Goessler, W.; Braeuer, S.; Čáslavský, J.; Pořízka, J.; Ilijević, K. Artificial Cellulose Standards as Calibration Standards for Wavelength-Dispersive X-Ray Fluorescence Analysis of Elements in Plant Samples. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2021, 502, 106–117. https://doi.org/10.1016/j.nimb.2021.06.012.. in Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2021;. https://hdl.handle.net/21.15107/rcub_cherry_4615 .
Orlić, Jovana, Gržetić, Ivan, Goessler, Walter, Braeuer, Simone, Čáslavský, Josef, Pořízka, Jaromír, Ilijević, Konstantin, "Supplementary data for the article: Orlić, J.; Gržetić, I.; Goessler, W.; Braeuer, S.; Čáslavský, J.; Pořízka, J.; Ilijević, K. Artificial Cellulose Standards as Calibration Standards for Wavelength-Dispersive X-Ray Fluorescence Analysis of Elements in Plant Samples. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2021, 502, 106–117. https://doi.org/10.1016/j.nimb.2021.06.012." in Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms (2021), https://hdl.handle.net/21.15107/rcub_cherry_4615 .