Optimization of phenol removal with horseradish peroxidase encapsulated within tyramine-alginate micro-beads
Authorized Users Only
2021
Authors
Pantić, NevenaProdanović, Radivoje

Ilić Đurđić, Karla

Polović, Natalija

Spasojević, Milica

Prodanović, Olivera
Article (Published version)

Metadata
Show full item recordAbstract
Removal of phenolic compounds from water is of major interest over the years, since they are one of the most common pollutants in aqueous systems. Horseradish peroxidase (HRP) is the most investigated biocatalyst for this purpose. Inactivation of the enzyme is a major issue which can be successfully overcome by the enzyme immobilization on different polymers. In this study, tyramine-alginate micro-beads were used as carriers for the immobilization of horseradish peroxidase. The effect of the oxidation degree of tyramine-alginates on a specific activity of the enzyme was tested. An increase in the concentration of oxidized alginate from 2.5 to 20% resulted in a gradual increase in the specific activity from 0.05 to 0.67 U/mL. HRP immobilized within these micro-beads was tested for the phenol removal in a batch reactor. Reaction conditions were optimized to achieve a high removal efficiency and substantial reusability of the system. In this study, for the first time, an internal generati...on of hydrogen peroxide from glucose and glucose oxidase was employed in the phenol removal process with HRP immobilized on tyramine-alginate. Within 6 h of repeated use 96% of phenol was removed when the system for internal delivery of H2O2, composed of 0.187 U/mL of glucose oxidase and 4 mmol/L of glucose was employed. A common straightforward addition of hydrogen peroxide provided the removal efficiency of only 42%, under the same reaction conditions. The highest efficiency of the phenol removal (96%) was obtained with HRP immobilized within 20 mol% oxidized tyramine-alginate micro-beads. Fifteen mol% oxidized tyramine-alginate showed lower removal efficiency in the first cycle of use (73%) but more promising reusability, since the immobilized enzyme retained 61% of its initial activity even after four consecutive cycles of use.
Keywords:
Alginate / Horseradish peroxidase / Immobilization / Phenol removal / TyramineSource:
Environmental Technology & Innovation, 2021, 21, 101211-Publisher:
- Elsevier
Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200053 (University of Belgrade, Institute for Multidisciplinary Research) (RS-200053)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200288 (Innovation Center of the Faculty of Chemistry) (RS-200288)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
DOI: 10.1016/j.eti.2020.101211
ISSN: 2352-1864
WoS: 000618243300014
Scopus: 2-s2.0-85094590385
Collections
Institution/Community
Hemijski fakultet / Faculty of ChemistryTY - JOUR AU - Pantić, Nevena AU - Prodanović, Radivoje AU - Ilić Đurđić, Karla AU - Polović, Natalija AU - Spasojević, Milica AU - Prodanović, Olivera PY - 2021 UR - http://cherry.chem.bg.ac.rs/handle/123456789/4768 AB - Removal of phenolic compounds from water is of major interest over the years, since they are one of the most common pollutants in aqueous systems. Horseradish peroxidase (HRP) is the most investigated biocatalyst for this purpose. Inactivation of the enzyme is a major issue which can be successfully overcome by the enzyme immobilization on different polymers. In this study, tyramine-alginate micro-beads were used as carriers for the immobilization of horseradish peroxidase. The effect of the oxidation degree of tyramine-alginates on a specific activity of the enzyme was tested. An increase in the concentration of oxidized alginate from 2.5 to 20% resulted in a gradual increase in the specific activity from 0.05 to 0.67 U/mL. HRP immobilized within these micro-beads was tested for the phenol removal in a batch reactor. Reaction conditions were optimized to achieve a high removal efficiency and substantial reusability of the system. In this study, for the first time, an internal generation of hydrogen peroxide from glucose and glucose oxidase was employed in the phenol removal process with HRP immobilized on tyramine-alginate. Within 6 h of repeated use 96% of phenol was removed when the system for internal delivery of H2O2, composed of 0.187 U/mL of glucose oxidase and 4 mmol/L of glucose was employed. A common straightforward addition of hydrogen peroxide provided the removal efficiency of only 42%, under the same reaction conditions. The highest efficiency of the phenol removal (96%) was obtained with HRP immobilized within 20 mol% oxidized tyramine-alginate micro-beads. Fifteen mol% oxidized tyramine-alginate showed lower removal efficiency in the first cycle of use (73%) but more promising reusability, since the immobilized enzyme retained 61% of its initial activity even after four consecutive cycles of use. PB - Elsevier T2 - Environmental Technology & Innovation T2 - Environmental Technology & InnovationEnvironmental Technology & Innovation T1 - Optimization of phenol removal with horseradish peroxidase encapsulated within tyramine-alginate micro-beads VL - 21 SP - 101211 DO - 10.1016/j.eti.2020.101211 ER -
@article{ author = "Pantić, Nevena and Prodanović, Radivoje and Ilić Đurđić, Karla and Polović, Natalija and Spasojević, Milica and Prodanović, Olivera", year = "2021", abstract = "Removal of phenolic compounds from water is of major interest over the years, since they are one of the most common pollutants in aqueous systems. Horseradish peroxidase (HRP) is the most investigated biocatalyst for this purpose. Inactivation of the enzyme is a major issue which can be successfully overcome by the enzyme immobilization on different polymers. In this study, tyramine-alginate micro-beads were used as carriers for the immobilization of horseradish peroxidase. The effect of the oxidation degree of tyramine-alginates on a specific activity of the enzyme was tested. An increase in the concentration of oxidized alginate from 2.5 to 20% resulted in a gradual increase in the specific activity from 0.05 to 0.67 U/mL. HRP immobilized within these micro-beads was tested for the phenol removal in a batch reactor. Reaction conditions were optimized to achieve a high removal efficiency and substantial reusability of the system. In this study, for the first time, an internal generation of hydrogen peroxide from glucose and glucose oxidase was employed in the phenol removal process with HRP immobilized on tyramine-alginate. Within 6 h of repeated use 96% of phenol was removed when the system for internal delivery of H2O2, composed of 0.187 U/mL of glucose oxidase and 4 mmol/L of glucose was employed. A common straightforward addition of hydrogen peroxide provided the removal efficiency of only 42%, under the same reaction conditions. The highest efficiency of the phenol removal (96%) was obtained with HRP immobilized within 20 mol% oxidized tyramine-alginate micro-beads. Fifteen mol% oxidized tyramine-alginate showed lower removal efficiency in the first cycle of use (73%) but more promising reusability, since the immobilized enzyme retained 61% of its initial activity even after four consecutive cycles of use.", publisher = "Elsevier", journal = "Environmental Technology & Innovation, Environmental Technology & InnovationEnvironmental Technology & Innovation", title = "Optimization of phenol removal with horseradish peroxidase encapsulated within tyramine-alginate micro-beads", volume = "21", pages = "101211", doi = "10.1016/j.eti.2020.101211" }
Pantić, N., Prodanović, R., Ilić Đurđić, K., Polović, N., Spasojević, M.,& Prodanović, O.. (2021). Optimization of phenol removal with horseradish peroxidase encapsulated within tyramine-alginate micro-beads. in Environmental Technology & Innovation Elsevier., 21, 101211. https://doi.org/10.1016/j.eti.2020.101211
Pantić N, Prodanović R, Ilić Đurđić K, Polović N, Spasojević M, Prodanović O. Optimization of phenol removal with horseradish peroxidase encapsulated within tyramine-alginate micro-beads. in Environmental Technology & Innovation. 2021;21:101211. doi:10.1016/j.eti.2020.101211 .
Pantić, Nevena, Prodanović, Radivoje, Ilić Đurđić, Karla, Polović, Natalija, Spasojević, Milica, Prodanović, Olivera, "Optimization of phenol removal with horseradish peroxidase encapsulated within tyramine-alginate micro-beads" in Environmental Technology & Innovation, 21 (2021):101211, https://doi.org/10.1016/j.eti.2020.101211 . .