In vitro cultivation of tansy (Tanacetum vulgare L.): a tool for the production of potent pharmaceutical agents
Authorized Users Only
2021
Authors
Devrnja, Nina
Krstić Milošević, Dijana
Janošević, Dušica
Tešević, Vele

Vinterhalter, Branka
Savić, Jelena
Ćalić, Dušica
Article (Published version)

© 2020, Springer-Verlag GmbH Austria, part of Springer Nature.
Metadata
Show full item recordAbstract
In this study, tansy (Tanacetum vulgare L.) in vitro culture was established from seeds collected from natural populations. The multiplication of plantlets was conducted through shoot tips that exhibited potent apical growth and regeneration capacities on basal medium (BM), without the addition of any plant growth regulators (PGRs). PGRs were also omitted for the establishment and cultivation of tansy root cultures. Both abaxial and adaxial leaf surfaces of in vitro micropropagated plantlets were covered with glandular biseriate trichomes. Histochemical staining showed that glandular secretions were rich in lipid and terpene compounds, confirmed by GC-MS analysis of essential oil (EO). In the total EO, similar portions of oxygenated monoterpenes (38.5% m/m) and oxygenated sesquiterpenes (22.6% m/m) were detected. Chemical profiles of methanol extracts of in vitro cultured tansy shoots and roots varied in quantity and quality from those obtained from wild-growingtansy. HPLC analysis ind...icated that the methanol extracts of in vitro cultured roots were the richest in 3,5-O-dicaffeoylquinic acid (3,5-O-DCQA), in which the concentration was 6 times higher (10.220 mg/g DW) than that in the extract obtained from roots of wild-growing tansy (1.684 mg/g DW). This result is noticeable in the manner of industrial production of biologically active 3,5-O-DCQA that has been shown to have antioxidant, hepatoprotective, antiviral, antimutagenic, and immunomodulatory activity. Biotechnological interventions on secondary metabolite production taking place in trichomes could further enhance the production of some important tansy metabolites and further investigation will be directed toward the elucidation of the pharmaceutical potential of tansy in vitro obtained metabolites, as mixtures or single moieties.
Keywords:
Essential oil / Histochemical analysis / In vitro cultivation / Methanol extracts / Phytochemical analysis / TansySource:
Protoplasma, 2021, 258, 587-599Publisher:
- Springer
Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200178 (University of Belgrade, Faculty of Biology) (RS-200178)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200007 (University of Belgrade, Institute for Biological Research 'Siniša Stanković') (RS-200007)
DOI: 10.1007/s00709-020-01588-9
ISSN: 0033-183X
PubMed: 33244630
WoS: 000593072300001
Scopus: 2-s2.0-85096557685
URI
http://link.springer.com/10.1007/s00709-020-01588-9https://radar.ibiss.bg.ac.rs/handle/123456789/4038
http://cherry.chem.bg.ac.rs/handle/123456789/4777
Collections
Institution/Community
Hemijski fakultet / Faculty of ChemistryTY - JOUR AU - Devrnja, Nina AU - Krstić Milošević, Dijana AU - Janošević, Dušica AU - Tešević, Vele AU - Vinterhalter, Branka AU - Savić, Jelena AU - Ćalić, Dušica PY - 2021 UR - http://link.springer.com/10.1007/s00709-020-01588-9 UR - https://radar.ibiss.bg.ac.rs/handle/123456789/4038 UR - http://cherry.chem.bg.ac.rs/handle/123456789/4777 AB - In this study, tansy (Tanacetum vulgare L.) in vitro culture was established from seeds collected from natural populations. The multiplication of plantlets was conducted through shoot tips that exhibited potent apical growth and regeneration capacities on basal medium (BM), without the addition of any plant growth regulators (PGRs). PGRs were also omitted for the establishment and cultivation of tansy root cultures. Both abaxial and adaxial leaf surfaces of in vitro micropropagated plantlets were covered with glandular biseriate trichomes. Histochemical staining showed that glandular secretions were rich in lipid and terpene compounds, confirmed by GC-MS analysis of essential oil (EO). In the total EO, similar portions of oxygenated monoterpenes (38.5% m/m) and oxygenated sesquiterpenes (22.6% m/m) were detected. Chemical profiles of methanol extracts of in vitro cultured tansy shoots and roots varied in quantity and quality from those obtained from wild-growingtansy. HPLC analysis indicated that the methanol extracts of in vitro cultured roots were the richest in 3,5-O-dicaffeoylquinic acid (3,5-O-DCQA), in which the concentration was 6 times higher (10.220 mg/g DW) than that in the extract obtained from roots of wild-growing tansy (1.684 mg/g DW). This result is noticeable in the manner of industrial production of biologically active 3,5-O-DCQA that has been shown to have antioxidant, hepatoprotective, antiviral, antimutagenic, and immunomodulatory activity. Biotechnological interventions on secondary metabolite production taking place in trichomes could further enhance the production of some important tansy metabolites and further investigation will be directed toward the elucidation of the pharmaceutical potential of tansy in vitro obtained metabolites, as mixtures or single moieties. PB - Springer T2 - Protoplasma T1 - In vitro cultivation of tansy (Tanacetum vulgare L.): a tool for the production of potent pharmaceutical agents VL - 258 SP - 587 EP - 599 DO - 10.1007/s00709-020-01588-9 ER -
@article{ author = "Devrnja, Nina and Krstić Milošević, Dijana and Janošević, Dušica and Tešević, Vele and Vinterhalter, Branka and Savić, Jelena and Ćalić, Dušica", year = "2021", abstract = "In this study, tansy (Tanacetum vulgare L.) in vitro culture was established from seeds collected from natural populations. The multiplication of plantlets was conducted through shoot tips that exhibited potent apical growth and regeneration capacities on basal medium (BM), without the addition of any plant growth regulators (PGRs). PGRs were also omitted for the establishment and cultivation of tansy root cultures. Both abaxial and adaxial leaf surfaces of in vitro micropropagated plantlets were covered with glandular biseriate trichomes. Histochemical staining showed that glandular secretions were rich in lipid and terpene compounds, confirmed by GC-MS analysis of essential oil (EO). In the total EO, similar portions of oxygenated monoterpenes (38.5% m/m) and oxygenated sesquiterpenes (22.6% m/m) were detected. Chemical profiles of methanol extracts of in vitro cultured tansy shoots and roots varied in quantity and quality from those obtained from wild-growingtansy. HPLC analysis indicated that the methanol extracts of in vitro cultured roots were the richest in 3,5-O-dicaffeoylquinic acid (3,5-O-DCQA), in which the concentration was 6 times higher (10.220 mg/g DW) than that in the extract obtained from roots of wild-growing tansy (1.684 mg/g DW). This result is noticeable in the manner of industrial production of biologically active 3,5-O-DCQA that has been shown to have antioxidant, hepatoprotective, antiviral, antimutagenic, and immunomodulatory activity. Biotechnological interventions on secondary metabolite production taking place in trichomes could further enhance the production of some important tansy metabolites and further investigation will be directed toward the elucidation of the pharmaceutical potential of tansy in vitro obtained metabolites, as mixtures or single moieties.", publisher = "Springer", journal = "Protoplasma", title = "In vitro cultivation of tansy (Tanacetum vulgare L.): a tool for the production of potent pharmaceutical agents", volume = "258", pages = "587-599", doi = "10.1007/s00709-020-01588-9" }
Devrnja, N., Krstić Milošević, D., Janošević, D., Tešević, V., Vinterhalter, B., Savić, J.,& Ćalić, D.. (2021). In vitro cultivation of tansy (Tanacetum vulgare L.): a tool for the production of potent pharmaceutical agents. in Protoplasma Springer., 258, 587-599. https://doi.org/10.1007/s00709-020-01588-9
Devrnja N, Krstić Milošević D, Janošević D, Tešević V, Vinterhalter B, Savić J, Ćalić D. In vitro cultivation of tansy (Tanacetum vulgare L.): a tool for the production of potent pharmaceutical agents. in Protoplasma. 2021;258:587-599. doi:10.1007/s00709-020-01588-9 .
Devrnja, Nina, Krstić Milošević, Dijana, Janošević, Dušica, Tešević, Vele, Vinterhalter, Branka, Savić, Jelena, Ćalić, Dušica, "In vitro cultivation of tansy (Tanacetum vulgare L.): a tool for the production of potent pharmaceutical agents" in Protoplasma, 258 (2021):587-599, https://doi.org/10.1007/s00709-020-01588-9 . .