Faculty of Chemistry Repository - Cherry
University of Belgrade - Faculty of Chemistry
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Therapeutic Potential of 2-{[4-(2-methoxyphenyl)piperazin-1-yl]alkyl}-1H-benzo[d]imidazoles as Ligands for Alpha1-Adrenergic Receptor - Comparative In Silico and In Vitro Study

Authorized Users Only
2022
Authors
Penjišević, Jelena Z.
Šukalović, Vladimir B.
Andrić, Deana
Suručić, Relja
Kostić-Rajačić, Slađana V.
Article (Published version)
Metadata
Show full item record
Abstract
Adrenergic receptors are among the most studied G protein-coupled receptors. Activation or blockade of these receptors is a major therapeutic approach for the treatment of numerous disorders such as cardiac hypertrophy, congestive heart failure, hypertension, angina pectoris, cardiac arrhythmias, depression, benign prostate hyperplasia, anaphylaxis, asthma, and hyperthyroidism. Among all nine cloned adrenoceptor subtypes and the subsequent development of animal models, a significant target for various neurological conditions treatment is alpha1-adrenergic receptors. 2-{[4-(2-Methoxyphenyl)piperazin-1-yl]alkyl}-1H-benzo[d]imidazoles, their 5 substituted derivatives, and structurally similar, arylpiperazine based alpha1-adrenergic receptors antagonists (trazodone, naftopidil, and urapidil) have been subjects of comparative analysis. Most of the novel compounds showed alpha1-adrenergic affinity in the range from 22 nM to 250 nM. The in silico docking and molecular dynamics simulations, bi...nding data together with absorption, distribution, metabolism, and excretion (ADME) calculations identified the promising lead compounds. The results brought out the conclusions which allowed us to propose a rationale for the activity of these molecules and to highlight six compounds (2-5, 8, and 12) that exhibited an acceptable pharmacokinetic profile to the advanced investigation as the potential alpha1-adrenergic receptor antagonists.

Keywords:
Alpha1-adrenergic receptors / Arylpiperazines / Binding assay / Docking analyses / Molecular dynamics simulations / Pharmacokinetics
Source:
Applied Biochemistry and Biotechnology, 2022, n/a
Publisher:
  • Springer
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
Note:
  • Supplementary material for: https://cherry.chem.bg.ac.rs/handle/123456789/5182
Related info:
  • Referenced by
    https://cherry.chem.bg.ac.rs/handle/123456789/5182

DOI: 10.1007/s12010-022-03922-8

ISSN: 1559-0291

WoS: 00079063420000

Scopus: 2-s2.0-85129642501
[ Google Scholar ]
URI
http://www.ncbi.nlm.nih.gov/pubmed/35507251
http://cherry.chem.bg.ac.rs/handle/123456789/5181
Collections
  • Publikacije
Institution/Community
Hemijski fakultet
TY  - JOUR
AU  - Penjišević, Jelena Z.
AU  - Šukalović, Vladimir B.
AU  - Andrić, Deana
AU  - Suručić, Relja
AU  - Kostić-Rajačić, Slađana V.
PY  - 2022
UR  - http://www.ncbi.nlm.nih.gov/pubmed/35507251
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5181
AB  - Adrenergic receptors are among the most studied G protein-coupled receptors. Activation or blockade of these receptors is a major therapeutic approach for the treatment of numerous disorders such as cardiac hypertrophy, congestive heart failure, hypertension, angina pectoris, cardiac arrhythmias, depression, benign prostate hyperplasia, anaphylaxis, asthma, and hyperthyroidism. Among all nine cloned adrenoceptor subtypes and the subsequent development of animal models, a significant target for various neurological conditions treatment is alpha1-adrenergic receptors. 2-{[4-(2-Methoxyphenyl)piperazin-1-yl]alkyl}-1H-benzo[d]imidazoles, their 5 substituted derivatives, and structurally similar, arylpiperazine based alpha1-adrenergic receptors antagonists (trazodone, naftopidil, and urapidil) have been subjects of comparative analysis. Most of the novel compounds showed alpha1-adrenergic affinity in the range from 22 nM to 250 nM. The in silico docking and molecular dynamics simulations, binding data together with absorption, distribution, metabolism, and excretion (ADME) calculations identified the promising lead compounds. The results brought out the conclusions which allowed us to propose a rationale for the activity of these molecules and to highlight six compounds (2-5, 8, and 12) that exhibited an acceptable pharmacokinetic profile to the advanced investigation as the potential alpha1-adrenergic receptor antagonists.
PB  - Springer
T2  - Applied Biochemistry and Biotechnology
T1  - The Therapeutic Potential of 2-{[4-(2-methoxyphenyl)piperazin-1-yl]alkyl}-1H-benzo[d]imidazoles as Ligands for Alpha1-Adrenergic Receptor - Comparative In Silico and In Vitro Study
VL  - n/a
DO  - 10.1007/s12010-022-03922-8
ER  - 
@article{
author = "Penjišević, Jelena Z. and Šukalović, Vladimir B. and Andrić, Deana and Suručić, Relja and Kostić-Rajačić, Slađana V.",
year = "2022",
abstract = "Adrenergic receptors are among the most studied G protein-coupled receptors. Activation or blockade of these receptors is a major therapeutic approach for the treatment of numerous disorders such as cardiac hypertrophy, congestive heart failure, hypertension, angina pectoris, cardiac arrhythmias, depression, benign prostate hyperplasia, anaphylaxis, asthma, and hyperthyroidism. Among all nine cloned adrenoceptor subtypes and the subsequent development of animal models, a significant target for various neurological conditions treatment is alpha1-adrenergic receptors. 2-{[4-(2-Methoxyphenyl)piperazin-1-yl]alkyl}-1H-benzo[d]imidazoles, their 5 substituted derivatives, and structurally similar, arylpiperazine based alpha1-adrenergic receptors antagonists (trazodone, naftopidil, and urapidil) have been subjects of comparative analysis. Most of the novel compounds showed alpha1-adrenergic affinity in the range from 22 nM to 250 nM. The in silico docking and molecular dynamics simulations, binding data together with absorption, distribution, metabolism, and excretion (ADME) calculations identified the promising lead compounds. The results brought out the conclusions which allowed us to propose a rationale for the activity of these molecules and to highlight six compounds (2-5, 8, and 12) that exhibited an acceptable pharmacokinetic profile to the advanced investigation as the potential alpha1-adrenergic receptor antagonists.",
publisher = "Springer",
journal = "Applied Biochemistry and Biotechnology",
title = "The Therapeutic Potential of 2-{[4-(2-methoxyphenyl)piperazin-1-yl]alkyl}-1H-benzo[d]imidazoles as Ligands for Alpha1-Adrenergic Receptor - Comparative In Silico and In Vitro Study",
volume = "n/a",
doi = "10.1007/s12010-022-03922-8"
}
Penjišević, J. Z., Šukalović, V. B., Andrić, D., Suručić, R.,& Kostić-Rajačić, S. V.. (2022). The Therapeutic Potential of 2-{[4-(2-methoxyphenyl)piperazin-1-yl]alkyl}-1H-benzo[d]imidazoles as Ligands for Alpha1-Adrenergic Receptor - Comparative In Silico and In Vitro Study. in Applied Biochemistry and Biotechnology
Springer., n/a.
https://doi.org/10.1007/s12010-022-03922-8
Penjišević JZ, Šukalović VB, Andrić D, Suručić R, Kostić-Rajačić SV. The Therapeutic Potential of 2-{[4-(2-methoxyphenyl)piperazin-1-yl]alkyl}-1H-benzo[d]imidazoles as Ligands for Alpha1-Adrenergic Receptor - Comparative In Silico and In Vitro Study. in Applied Biochemistry and Biotechnology. 2022;n/a.
doi:10.1007/s12010-022-03922-8 .
Penjišević, Jelena Z., Šukalović, Vladimir B., Andrić, Deana, Suručić, Relja, Kostić-Rajačić, Slađana V., "The Therapeutic Potential of 2-{[4-(2-methoxyphenyl)piperazin-1-yl]alkyl}-1H-benzo[d]imidazoles as Ligands for Alpha1-Adrenergic Receptor - Comparative In Silico and In Vitro Study" in Applied Biochemistry and Biotechnology, n/a (2022),
https://doi.org/10.1007/s12010-022-03922-8 . .

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB