Faculty of Chemistry Repository - Cherry
University of Belgrade - Faculty of Chemistry
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Cherry
  • Inovacioni centar
  • Publikacije
  • View Item
  •   Cherry
  • Inovacioni centar
  • Publikacije
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stacking Interactions of Resonance-Assisted Hydrogen-Bridged Rings and C6-Aromatic Rings

Thumbnail
2020
bitstream_30394.pdf (1.294Mb)
Authors
Blagojević Filipović, Jelena P.
Hall, Michael B.
Zarić, Snežana D.
Article (Accepted Version)
,
аутори
Metadata
Show full item record
Abstract
Stacking interactions between six-membered resonance-assisted hydrogen-bridged rings (RAHB) and C6-aromatic rings are systematically studied by analyzing crystal structures in Cambridge Structural Database (CSD). The interaction energies were calculated by quantum-chemical methods. Although the interactions are stronger than benzene/benzene stacking interactions (-2.7 kcal/mol) the strongest calculated RAHB/benzene stacking interaction (-3.7 kcal/mol) is significantly weaker than the strongest calculated RAHB/RAHB stacking interaction (-4.7 kcal/mol), but for particular composition of RAHB rings RAHB/benzene stacking interactions can be weaker or stronger than the corresponding RAHB/RAHB stacking interactions. They are also weaker than the strongest calculated stacking interaction between five-membered saturated hydrogen-bridged rings and benzene (-4.4 kcal/mol) and between two five-membered saturated hydrogen-bridged rings (-4.9 kcal/mol). SAPT energy decomposition analyses show that ...the strongest attractive term in RAHB/benzene stacking interactions is dispersion, however, it is mostly canceled by repulsive exchange term, hence the geometries of the most stable structures are determined by electrostatic term.

Source:
Physical Chemistry Chemical Physics, 2020, 22, 24, 13721-13728
Publisher:
  • Royal Society of Chemistry
Funding / projects:
  • Noncovalent interactions of pi-systems and their role in molecular recognition (RS-172065)
  • Qatar National Research Fund (NPRP8-425-1-087)
Note:
  • This is the peer-reviewed version of the following article: Filipović, J. P. B.; Hall, M. B.; Zarić, S. D. Stacking Interactions of Resonance-Assisted Hydrogen-Bridged Rings and C6-Aromatic Rings. Physical Chemistry Chemical Physics 2020, 22 (24), 13721–13728. https://doi.org/10.1039/d0cp01624A.
  • Supplementary material: https://cherry.chem.bg.ac.rs/handle/123456789/4079
  • Related to published version: https://cherry.chem.bg.ac.rs/handle/123456789/4060
Related info:
  • Version of
    https://doi.org/10.1039/D0CP01624A
  • Referenced by
    https://cherry.chem.bg.ac.rs/handle/123456789/4079

DOI: 10.1039/D0CP01624A

ISSN: 1463-9076

[ Google Scholar ]
URI
http://cherry.chem.bg.ac.rs/handle/123456789/5307
Collections
  • Publikacije
Institution/Community
Inovacioni centar
TY  - JOUR
AU  - Blagojević Filipović, Jelena P.
AU  - Hall, Michael B.
AU  - Zarić, Snežana D.
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5307
AB  - Stacking interactions between six-membered resonance-assisted hydrogen-bridged rings (RAHB) and C6-aromatic rings are systematically studied by analyzing crystal structures in Cambridge Structural Database (CSD). The interaction energies were calculated by quantum-chemical methods. Although the interactions are stronger than benzene/benzene stacking interactions (-2.7 kcal/mol) the strongest calculated RAHB/benzene stacking interaction (-3.7 kcal/mol) is significantly weaker than the strongest calculated RAHB/RAHB stacking interaction (-4.7 kcal/mol), but for particular composition of RAHB rings RAHB/benzene stacking interactions can be weaker or stronger than the corresponding RAHB/RAHB stacking interactions. They are also weaker than the strongest calculated stacking interaction between five-membered saturated hydrogen-bridged rings and benzene (-4.4 kcal/mol) and between two five-membered saturated hydrogen-bridged rings (-4.9 kcal/mol). SAPT energy decomposition analyses show that the strongest attractive term in RAHB/benzene stacking interactions is dispersion, however, it is mostly canceled by repulsive exchange term, hence the geometries of the most stable structures are determined by electrostatic term.
PB  - Royal Society of Chemistry
T2  - Physical Chemistry Chemical Physics
T1  - Stacking Interactions of Resonance-Assisted Hydrogen-Bridged Rings and C6-Aromatic Rings
VL  - 22
IS  - 24
SP  - 13721
EP  - 13728
DO  - 10.1039/D0CP01624A
ER  - 
@article{
author = "Blagojević Filipović, Jelena P. and Hall, Michael B. and Zarić, Snežana D.",
year = "2020",
abstract = "Stacking interactions between six-membered resonance-assisted hydrogen-bridged rings (RAHB) and C6-aromatic rings are systematically studied by analyzing crystal structures in Cambridge Structural Database (CSD). The interaction energies were calculated by quantum-chemical methods. Although the interactions are stronger than benzene/benzene stacking interactions (-2.7 kcal/mol) the strongest calculated RAHB/benzene stacking interaction (-3.7 kcal/mol) is significantly weaker than the strongest calculated RAHB/RAHB stacking interaction (-4.7 kcal/mol), but for particular composition of RAHB rings RAHB/benzene stacking interactions can be weaker or stronger than the corresponding RAHB/RAHB stacking interactions. They are also weaker than the strongest calculated stacking interaction between five-membered saturated hydrogen-bridged rings and benzene (-4.4 kcal/mol) and between two five-membered saturated hydrogen-bridged rings (-4.9 kcal/mol). SAPT energy decomposition analyses show that the strongest attractive term in RAHB/benzene stacking interactions is dispersion, however, it is mostly canceled by repulsive exchange term, hence the geometries of the most stable structures are determined by electrostatic term.",
publisher = "Royal Society of Chemistry",
journal = "Physical Chemistry Chemical Physics",
title = "Stacking Interactions of Resonance-Assisted Hydrogen-Bridged Rings and C6-Aromatic Rings",
volume = "22",
number = "24",
pages = "13721-13728",
doi = "10.1039/D0CP01624A"
}
Blagojević Filipović, J. P., Hall, M. B.,& Zarić, S. D.. (2020). Stacking Interactions of Resonance-Assisted Hydrogen-Bridged Rings and C6-Aromatic Rings. in Physical Chemistry Chemical Physics
Royal Society of Chemistry., 22(24), 13721-13728.
https://doi.org/10.1039/D0CP01624A
Blagojević Filipović JP, Hall MB, Zarić SD. Stacking Interactions of Resonance-Assisted Hydrogen-Bridged Rings and C6-Aromatic Rings. in Physical Chemistry Chemical Physics. 2020;22(24):13721-13728.
doi:10.1039/D0CP01624A .
Blagojević Filipović, Jelena P., Hall, Michael B., Zarić, Snežana D., "Stacking Interactions of Resonance-Assisted Hydrogen-Bridged Rings and C6-Aromatic Rings" in Physical Chemistry Chemical Physics, 22, no. 24 (2020):13721-13728,
https://doi.org/10.1039/D0CP01624A . .

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB