Репозиторијум Хемијског факултета - Cherry
Универзитет у Београду - Хемијски факултет
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед записа 
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • Преглед записа
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • Преглед записа
JavaScript is disabled for your browser. Some features of this site may not work without it.

Strong Hydrogen Bonds of Coordinated Ammonia Molecules

Само за регистроване кориснике
2021
Аутори
Živković, Jelena M.
Veljković, Dušan Ž.
Zarić, Snežana D.
Чланак у часопису (Објављена верзија)
Метаподаци
Приказ свих података о документу
Апстракт
The hydrogen bonds of noncoordinated (NH/O) and coordinated ammonia (MLNH/O) with water molecules were studied by analyzing data in the Cambridge Structural Database (CSD) and by DFT calculations. The data from the CSD on the distribution of hydrogen bond dHO distances of the coordinated ammonia show a peak in the range of 2.0−2.2 Å with a significant number of hydrogen bonds in the range of 1.8−2.0 Å. Analysis of Hirshfeld surfaces showed that coordinated NH3 molecules are involved in numerous noncovalent contacts. The DFT calculations were performed on linear complexes of silver(I), square-planar complexes of platinum(II), tetrahedral complexes of zinc(II), and octahedral complexes of cobalt(III) by varying the charge of the complexes. The calculated data show that coordinated ammonia has stronger hydrogen bonds than noncoordinated ammonia, even for neutral complexes. The hydrogen bond energy of noncoordinated ammonia is −2.3 kcal/mol, while for coordinated ammonia, attractive intera...ctions are in the range of −3.7 to −25.0 kcal/mol, depending on the metal ion and charge of the complex. The interaction energies for metal complexes from neutral to charged species are for the linear silver(I) complex from −6.0 to −10.7 kcal/mol, while for the square planar complex, interactions span from −5.9 to −19.9 kcal/mol. The tetrahedral zinc(II) complexes have interaction energy from −5.5 to −17.5 kcal/mol, while for the octahedral cobalt(III) complex, attractive interaction energies are from −3.7 to −25.0 kcal/mol. With the increasing charge of the metal complex, the hydrogen bond between coordinated ammonia and free water becomes stronger, and in accordance with that, the dHO distance becomes shorter. The bifurcated interaction is stronger than monofurcated for all complexes. The interaction energies correspond well with the electrostatic potential (Vs) values on interacting hydrogen atoms; the more positive Vs values on hydrogen atoms lead to stronger interaction. The hydrogen bond between ammonia and water molecules (−2.3 kcal/mol) is quite weak in comparison to the water/water hydrogen bond; it is 50% of the water/water hydrogen bond (−4.84 kcal/mol). Although the hydrogen bonds of coordinated ammonia are also weaker than hydrogen bonds of coordinated water molecules, the difference is smaller, indicating the importance of the coordination on the strength of hydrogen bonds.

Извор:
Crystal Growth and Design, 2021, 22, 148-158
Издавач:
  • American Chemical Society
Финансирање / пројекти:
  • Министарство просвете, науке и технолошког развоја Републике Србије, Уговор бр. 200168 (Универзитет у Београду, Хемијски факултет) (RS-200168)
  • Министарство просвете, науке и технолошког развоја Републике Србије, Уговор бр. 200288 (Иновациони центар Хемијског факултета у Београду доо) (RS-200288)

DOI: 10.1021/acs.cgd.1c00685

ISSN: 1528-7483

[ Google Scholar ]
URI
http://cherry.chem.bg.ac.rs/handle/123456789/5351
Колекције
  • Publikacije
Институција/група
Hemijski fakultet
TY  - JOUR
AU  - Živković, Jelena M.
AU  - Veljković, Dušan Ž.
AU  - Zarić, Snežana D.
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5351
AB  - The hydrogen bonds of noncoordinated (NH/O) and coordinated ammonia (MLNH/O) with water molecules were studied by analyzing data in the Cambridge Structural Database (CSD) and by DFT calculations. The data from the CSD on the distribution of hydrogen bond dHO distances of the coordinated ammonia show a peak in the range of 2.0−2.2 Å with a significant number of hydrogen bonds in the range of 1.8−2.0 Å. Analysis of Hirshfeld surfaces showed that coordinated NH3 molecules are involved in numerous noncovalent contacts. The DFT calculations were performed on linear complexes of silver(I), square-planar complexes of platinum(II), tetrahedral complexes of zinc(II), and octahedral complexes of cobalt(III) by varying the charge of the complexes. The calculated data show that coordinated ammonia has stronger hydrogen bonds than noncoordinated ammonia, even for neutral complexes. The hydrogen bond energy of noncoordinated ammonia is −2.3 kcal/mol, while for coordinated ammonia, attractive interactions are in the range of −3.7 to −25.0 kcal/mol, depending on the metal ion and charge of the complex. The interaction energies for metal complexes from neutral to charged species are for the linear silver(I) complex from −6.0 to −10.7 kcal/mol, while for the square planar complex, interactions span from −5.9 to −19.9 kcal/mol. The tetrahedral zinc(II) complexes have interaction energy from −5.5 to −17.5 kcal/mol, while for the octahedral cobalt(III) complex, attractive interaction energies are from −3.7 to −25.0 kcal/mol. With the increasing charge of the metal complex, the hydrogen bond between coordinated ammonia and free water becomes stronger, and in accordance with that, the dHO distance becomes shorter. The bifurcated interaction is stronger than monofurcated for all complexes. The interaction energies correspond well with the electrostatic potential (Vs) values on interacting hydrogen atoms; the more positive Vs values on hydrogen atoms lead to stronger interaction. The hydrogen bond between ammonia and water molecules (−2.3 kcal/mol) is quite weak in comparison to the water/water hydrogen bond; it is 50% of the water/water hydrogen bond (−4.84 kcal/mol). Although the hydrogen bonds of coordinated ammonia are also weaker than hydrogen bonds of coordinated water molecules, the difference is smaller, indicating the importance of the coordination on the strength of hydrogen bonds.
PB  - American Chemical Society
T2  - Crystal Growth and Design
T1  - Strong Hydrogen Bonds of Coordinated Ammonia Molecules
VL  - 22
SP  - 148
EP  - 158
DO  - 10.1021/acs.cgd.1c00685
ER  - 
@article{
author = "Živković, Jelena M. and Veljković, Dušan Ž. and Zarić, Snežana D.",
year = "2021",
abstract = "The hydrogen bonds of noncoordinated (NH/O) and coordinated ammonia (MLNH/O) with water molecules were studied by analyzing data in the Cambridge Structural Database (CSD) and by DFT calculations. The data from the CSD on the distribution of hydrogen bond dHO distances of the coordinated ammonia show a peak in the range of 2.0−2.2 Å with a significant number of hydrogen bonds in the range of 1.8−2.0 Å. Analysis of Hirshfeld surfaces showed that coordinated NH3 molecules are involved in numerous noncovalent contacts. The DFT calculations were performed on linear complexes of silver(I), square-planar complexes of platinum(II), tetrahedral complexes of zinc(II), and octahedral complexes of cobalt(III) by varying the charge of the complexes. The calculated data show that coordinated ammonia has stronger hydrogen bonds than noncoordinated ammonia, even for neutral complexes. The hydrogen bond energy of noncoordinated ammonia is −2.3 kcal/mol, while for coordinated ammonia, attractive interactions are in the range of −3.7 to −25.0 kcal/mol, depending on the metal ion and charge of the complex. The interaction energies for metal complexes from neutral to charged species are for the linear silver(I) complex from −6.0 to −10.7 kcal/mol, while for the square planar complex, interactions span from −5.9 to −19.9 kcal/mol. The tetrahedral zinc(II) complexes have interaction energy from −5.5 to −17.5 kcal/mol, while for the octahedral cobalt(III) complex, attractive interaction energies are from −3.7 to −25.0 kcal/mol. With the increasing charge of the metal complex, the hydrogen bond between coordinated ammonia and free water becomes stronger, and in accordance with that, the dHO distance becomes shorter. The bifurcated interaction is stronger than monofurcated for all complexes. The interaction energies correspond well with the electrostatic potential (Vs) values on interacting hydrogen atoms; the more positive Vs values on hydrogen atoms lead to stronger interaction. The hydrogen bond between ammonia and water molecules (−2.3 kcal/mol) is quite weak in comparison to the water/water hydrogen bond; it is 50% of the water/water hydrogen bond (−4.84 kcal/mol). Although the hydrogen bonds of coordinated ammonia are also weaker than hydrogen bonds of coordinated water molecules, the difference is smaller, indicating the importance of the coordination on the strength of hydrogen bonds.",
publisher = "American Chemical Society",
journal = "Crystal Growth and Design",
title = "Strong Hydrogen Bonds of Coordinated Ammonia Molecules",
volume = "22",
pages = "148-158",
doi = "10.1021/acs.cgd.1c00685"
}
Živković, J. M., Veljković, D. Ž.,& Zarić, S. D.. (2021). Strong Hydrogen Bonds of Coordinated Ammonia Molecules. in Crystal Growth and Design
American Chemical Society., 22, 148-158.
https://doi.org/10.1021/acs.cgd.1c00685
Živković JM, Veljković DŽ, Zarić SD. Strong Hydrogen Bonds of Coordinated Ammonia Molecules. in Crystal Growth and Design. 2021;22:148-158.
doi:10.1021/acs.cgd.1c00685 .
Živković, Jelena M., Veljković, Dušan Ž., Zarić, Snežana D., "Strong Hydrogen Bonds of Coordinated Ammonia Molecules" in Crystal Growth and Design, 22 (2021):148-158,
https://doi.org/10.1021/acs.cgd.1c00685 . .

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму CHERRY (CHEmistry RepositoRY) | Пошаљите запажања

re3dataOpenAIRERCUB
 

 

Комплетан репозиторијумИнституцијеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму CHERRY (CHEmistry RepositoRY) | Пошаљите запажања

re3dataOpenAIRERCUB