Faculty of Chemistry Repository - Cherry
University of Belgrade - Faculty of Chemistry
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Cherry
  • Inovacioni centar
  • Publikacije
  • View Item
  •   Cherry
  • Inovacioni centar
  • Publikacije
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hydrogen Adsorption Process In Nanocrystalline Nuclear Graphite

Thumbnail
2022
Hydrogen_Adsorption_process_pub_2022.pdf (625.0Kb)
Authors
Lukić, Vladimir D.
Spasojević, Milica M.
Luković, Milentije
Spasojević, Miroslav
Maričić, Aleksa
Article (Published version)
Metadata
Show full item record
Abstract
Kinetics and mechanism of hydrogen adsorption in as-obtained and ground nuclear graphite Wendelstein 7-X are examined. In the first time interval the adsorption process is determined by dissociation of the hydrogen molecule, occurring at the outer surface and in open micropores of nuclear graphite particles. However, in the second time interval, the slowest step in the hydrogen adsorption is inter-granular and inter-crystallite diffusion in nanopores of graphite. The X-ray analysis shows, that grinding of as-obtained nuclear graphite results in finer particles with finer nanocrystals and larger density of opened pores and carbon reactive sites. The capacity and rate of adsorption increase with comminution of nuclear graphite particles and adsorbed hydrogen does not sub stantially alter the microstructure of nuclear graphite.
Keywords:
hydrogen adsorption / porous graphite / surface area / nanocrystalline nucleargraphite / kinetic and mechanism
Source:
Nuclear Technology and Radiation Protection, 2022, 37, 1, 11-17
Publisher:
  • Belgrade : Vinča Institute of Nuclear Sciences
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200288 (Innovation Center of the Faculty of Chemistry) (RS-200288)

DOI: 10.2298/NTRP2201011L

ISSN: 1451-3994

Scopus: 2-s2.0-85137882338
[ Google Scholar ]
URI
http://cherry.chem.bg.ac.rs/handle/123456789/5621
Collections
  • Publikacije
Institution/Community
Inovacioni centar
TY  - JOUR
AU  - Lukić, Vladimir D.
AU  - Spasojević, Milica M.
AU  - Luković, Milentije
AU  - Spasojević, Miroslav
AU  - Maričić, Aleksa
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5621
AB  - Kinetics and mechanism of hydrogen adsorption in as-obtained and ground nuclear graphite
Wendelstein 7-X are examined. In the first time interval the adsorption process is determined
by dissociation of the hydrogen molecule, occurring at the outer surface and in open
micropores of nuclear graphite particles. However, in the second time interval, the slowest
step in the hydrogen adsorption is inter-granular and inter-crystallite diffusion in nanopores
of graphite. The X-ray analysis shows, that grinding of as-obtained nuclear graphite results in
finer particles with finer nanocrystals and larger density of opened pores and carbon reactive
sites. The capacity and rate of adsorption increase with comminution of nuclear graphite particles and adsorbed hydrogen does not sub stantially alter the microstructure of nuclear
graphite.
PB  - Belgrade : Vinča Institute of Nuclear Sciences
T2  - Nuclear Technology and Radiation Protection
T1  - Hydrogen Adsorption Process In Nanocrystalline Nuclear Graphite
VL  - 37
IS  - 1
SP  - 11
EP  - 17
DO  - 10.2298/NTRP2201011L
ER  - 
@article{
author = "Lukić, Vladimir D. and Spasojević, Milica M. and Luković, Milentije and Spasojević, Miroslav and Maričić, Aleksa",
year = "2022",
abstract = "Kinetics and mechanism of hydrogen adsorption in as-obtained and ground nuclear graphite
Wendelstein 7-X are examined. In the first time interval the adsorption process is determined
by dissociation of the hydrogen molecule, occurring at the outer surface and in open
micropores of nuclear graphite particles. However, in the second time interval, the slowest
step in the hydrogen adsorption is inter-granular and inter-crystallite diffusion in nanopores
of graphite. The X-ray analysis shows, that grinding of as-obtained nuclear graphite results in
finer particles with finer nanocrystals and larger density of opened pores and carbon reactive
sites. The capacity and rate of adsorption increase with comminution of nuclear graphite particles and adsorbed hydrogen does not sub stantially alter the microstructure of nuclear
graphite.",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences",
journal = "Nuclear Technology and Radiation Protection",
title = "Hydrogen Adsorption Process In Nanocrystalline Nuclear Graphite",
volume = "37",
number = "1",
pages = "11-17",
doi = "10.2298/NTRP2201011L"
}
Lukić, V. D., Spasojević, M. M., Luković, M., Spasojević, M.,& Maričić, A.. (2022). Hydrogen Adsorption Process In Nanocrystalline Nuclear Graphite. in Nuclear Technology and Radiation Protection
Belgrade : Vinča Institute of Nuclear Sciences., 37(1), 11-17.
https://doi.org/10.2298/NTRP2201011L
Lukić VD, Spasojević MM, Luković M, Spasojević M, Maričić A. Hydrogen Adsorption Process In Nanocrystalline Nuclear Graphite. in Nuclear Technology and Radiation Protection. 2022;37(1):11-17.
doi:10.2298/NTRP2201011L .
Lukić, Vladimir D., Spasojević, Milica M., Luković, Milentije, Spasojević, Miroslav, Maričić, Aleksa, "Hydrogen Adsorption Process In Nanocrystalline Nuclear Graphite" in Nuclear Technology and Radiation Protection, 37, no. 1 (2022):11-17,
https://doi.org/10.2298/NTRP2201011L . .

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB