Faculty of Chemistry Repository - Cherry
University of Belgrade - Faculty of Chemistry
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor

Thumbnail
2022
Electrochemical_Determination_of_Morphine_pub_2022.pdf (3.957Mb)
Authors
Ognjanović, Miloš
Nikolić, Katarina
Bošković, Marko
Pastor, Ferenc
Popov, Nina
Marciuš, Marijan
Krehula, Stjepko
Antić, Bratislav
Stanković, Dalibor
Article (Published version)
Metadata
Show full item record
Abstract
Morphine (MORPH) is natural alkaloid and mainly used as a pain reliever. Its monitoring in human body fluids is crucial for modern medicine. In this paper, we have developed an electrochemical sensor for submicromolar detection of MORPH. The sensor is based on modified carbon paste electrode (CPE) by investigating the FexW1-xO4 ratio in iron tungstate (FeWO4), as well as the ratio of this material in CPE. For the first time, the effect of the iron–tungsten ratio in terms of achieving the best possible electrochemical characteristics for the detection of an important molecule for humans was examined. Morphological and electrochemical characteristics of materials were studied. The best results were obtained using Fe1W3 and 7.5% of modifier in CPE. For MORPH detection, square wave voltammetry (SWV) was optimized. Under the optimized conditions, Fe1W3@CPE resulted in limit of detection (LOD) of the method of 0.58 µM and limit of quantification (LOQ) of 1.94 µM. The linear operating range b...etween 5 and 85 µM of MORPH in the Britton–Robinson buffer solution (BRBS) at pH 8 as supporting electrolyte was obtained. The Fe1W3@CPE sensor resulted in good selectivity and excellent repeatability with relative standard deviation (RSD) and was applied in real-world samples of human urine. Application for direct MORPH detection, without tedious sample pretreatment procedures, suggests that developed electrochemical sensor has appeared to be a suitable competitor for efficient, precise, and accurate monitoring of the MORPH in biological fluids.

Keywords:
iron tungstate / carbon paste electrode / electroanalysis / square wave voltammetry / morphine / real-world sample
Source:
Biosensors, 2022, 12, 11, 932-
Publisher:
  • MDPI
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
  • EUREKA project E!13303

DOI: 10.3390/bios12110932

ISSN: 2079-6374

Scopus: 2-s2.0-85141780642
[ Google Scholar ]
3
URI
http://cherry.chem.bg.ac.rs/handle/123456789/5682
Collections
  • Publikacije
Institution/Community
Hemijski fakultet
TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Nikolić, Katarina
AU  - Bošković, Marko
AU  - Pastor, Ferenc
AU  - Popov, Nina
AU  - Marciuš, Marijan
AU  - Krehula, Stjepko
AU  - Antić, Bratislav
AU  - Stanković, Dalibor
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5682
AB  - Morphine (MORPH) is natural alkaloid and mainly used as a pain reliever. Its monitoring in human body fluids is crucial for modern medicine. In this paper, we have developed an electrochemical sensor for submicromolar detection of MORPH. The sensor is based on modified carbon paste electrode (CPE) by investigating the FexW1-xO4 ratio in iron tungstate (FeWO4), as well as the ratio of this material in CPE. For the first time, the effect of the iron–tungsten ratio in terms of achieving the best possible electrochemical characteristics for the detection of an important molecule for humans was examined. Morphological and electrochemical characteristics of materials were studied. The best results were obtained using Fe1W3 and 7.5% of modifier in CPE. For MORPH detection, square wave voltammetry (SWV) was optimized. Under the optimized conditions, Fe1W3@CPE resulted in limit of detection (LOD) of the method of 0.58 µM and limit of quantification (LOQ) of 1.94 µM. The linear operating range between 5 and 85 µM of MORPH in the Britton–Robinson buffer solution (BRBS) at pH 8 as supporting electrolyte was obtained. The Fe1W3@CPE sensor resulted in good selectivity and excellent repeatability with relative standard deviation (RSD) and was applied in real-world samples of human urine. Application for direct MORPH detection, without tedious sample pretreatment procedures, suggests that developed electrochemical sensor has appeared to be a suitable competitor for efficient, precise, and accurate monitoring of the MORPH in biological fluids.
PB  - MDPI
T2  - Biosensors
T1  - Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor
VL  - 12
IS  - 11
SP  - 932
DO  - 10.3390/bios12110932
ER  - 
@article{
author = "Ognjanović, Miloš and Nikolić, Katarina and Bošković, Marko and Pastor, Ferenc and Popov, Nina and Marciuš, Marijan and Krehula, Stjepko and Antić, Bratislav and Stanković, Dalibor",
year = "2022",
abstract = "Morphine (MORPH) is natural alkaloid and mainly used as a pain reliever. Its monitoring in human body fluids is crucial for modern medicine. In this paper, we have developed an electrochemical sensor for submicromolar detection of MORPH. The sensor is based on modified carbon paste electrode (CPE) by investigating the FexW1-xO4 ratio in iron tungstate (FeWO4), as well as the ratio of this material in CPE. For the first time, the effect of the iron–tungsten ratio in terms of achieving the best possible electrochemical characteristics for the detection of an important molecule for humans was examined. Morphological and electrochemical characteristics of materials were studied. The best results were obtained using Fe1W3 and 7.5% of modifier in CPE. For MORPH detection, square wave voltammetry (SWV) was optimized. Under the optimized conditions, Fe1W3@CPE resulted in limit of detection (LOD) of the method of 0.58 µM and limit of quantification (LOQ) of 1.94 µM. The linear operating range between 5 and 85 µM of MORPH in the Britton–Robinson buffer solution (BRBS) at pH 8 as supporting electrolyte was obtained. The Fe1W3@CPE sensor resulted in good selectivity and excellent repeatability with relative standard deviation (RSD) and was applied in real-world samples of human urine. Application for direct MORPH detection, without tedious sample pretreatment procedures, suggests that developed electrochemical sensor has appeared to be a suitable competitor for efficient, precise, and accurate monitoring of the MORPH in biological fluids.",
publisher = "MDPI",
journal = "Biosensors",
title = "Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor",
volume = "12",
number = "11",
pages = "932",
doi = "10.3390/bios12110932"
}
Ognjanović, M., Nikolić, K., Bošković, M., Pastor, F., Popov, N., Marciuš, M., Krehula, S., Antić, B.,& Stanković, D.. (2022). Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor. in Biosensors
MDPI., 12(11), 932.
https://doi.org/10.3390/bios12110932
Ognjanović M, Nikolić K, Bošković M, Pastor F, Popov N, Marciuš M, Krehula S, Antić B, Stanković D. Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor. in Biosensors. 2022;12(11):932.
doi:10.3390/bios12110932 .
Ognjanović, Miloš, Nikolić, Katarina, Bošković, Marko, Pastor, Ferenc, Popov, Nina, Marciuš, Marijan, Krehula, Stjepko, Antić, Bratislav, Stanković, Dalibor, "Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor" in Biosensors, 12, no. 11 (2022):932,
https://doi.org/10.3390/bios12110932 . .

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB