Faculty of Chemistry Repository - Cherry
University of Belgrade - Faculty of Chemistry
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Cherry
  • Hemijski fakultet
  • Primarni podaci
  • View Item
  •   Cherry
  • Hemijski fakultet
  • Primarni podaci
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Supplementary material for: Živković, J. M., Milovanović, M. R.,& Zarić, S. D.. (2022). Hydrogen Bonds of Coordinated Ethylenediamine and a Water Molecule: Joint Crystallographic and Computational Study of Second Coordination Sphere. in Cryst. Growth Des. ACS Publication., 22(9), 5198-5205. https://doi.org/10.1021/acs.cgd.2c00196

Thumbnail
2022
Hydrogen_bonds_of_sup_2022.pdf (584.3Kb)
Authors
Živković, Jelena M
Milovanović, Milan R.
Zarić, Snežana D.
Dataset (Published version)
Metadata
Show full item record
Abstract
In the study of hydrogen bonds between noncoordinated and metal-coordinated ethylenediamine and a water molecule, the data in the Cambridge Structural Database (CSD) were analyzed and DFT calculations were performed. For coordinated ethylenediamine in the CSD, the analyzed distributions of dOH distances show a maximum in the range of 2.0–2.1 Å, while the angle α shows a maximum in the range of 150–160°. The DFT calculations were done for octahedral geometries of cobalt(III), copper(II), and nickel(II) complexes and square-planar geometry of palladium(II) complexes. The coordination of ethylenediamine to the metal ions strengthens its hydrogen bond with the water molecule. Namely, noncoordinated ethylenediamine and the water molecule have an interaction energy of −2.3 kcal/mol, while for coordinated ethylenediamine, the interacting energy spans from −4.0 to −28.0 kcal/mol depending on the metal ion and charge of the complex. The hydrogen bond energies have a good correlation with the ca...lculated electrostatic potential on the interacting hydrogen atom. The coordination number and oxidation states of the metal have a significant influence on the electrostatic potential on the interacting hydrogen atom and the energy of hydrogen bonds.

Keywords:
Hydrogen / Interaction energies / Metals / Molecules / Noncovalent interactions
Source:
Cryst. Growth Des., 2022
Publisher:
  • ACS Publication
Funding / projects:
  • Noncovalent interactions of pi-systems and their role in molecular recognition (RS-172065)
Note:
  • Supplementary material for: https://doi.org/10.1021/acs.cgd.2c00196
  • Related to published version: https://cherry.chem.bg.ac.rs/handle/123456789/5698
  • Related to accepted verison: https://cherry.chem.bg.ac.rs/handle/123456789/5699
Related info:
  • Referenced by
    https://doi.org/10.1021/acs.cgd.2c00196
  • Referenced by
    https://cherry.chem.bg.ac.rs/handle/123456789/5698
  • Referenced by
    https://cherry.chem.bg.ac.rs/handle/123456789/5699

ISSN: 1528-7483

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_cherry_5700
URI
http://cherry.chem.bg.ac.rs/handle/123456789/5700
Collections
  • Primarni podaci
  • Primarni podaci
Institution/Community
Hemijski fakultet
TY  - DATA
AU  - Živković, Jelena M
AU  - Milovanović, Milan R.
AU  - Zarić, Snežana D.
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5700
AB  - In the study of hydrogen bonds between noncoordinated and metal-coordinated ethylenediamine and a water molecule, the data in the Cambridge Structural Database (CSD) were analyzed and DFT calculations were performed. For coordinated ethylenediamine in the CSD, the analyzed distributions of dOH distances show a maximum in the range of 2.0–2.1 Å, while the angle α shows a maximum in the range of 150–160°. The DFT calculations were done for octahedral geometries of cobalt(III), copper(II), and nickel(II) complexes and square-planar geometry of palladium(II) complexes. The coordination of ethylenediamine to the metal ions strengthens its hydrogen bond with the water molecule. Namely, noncoordinated ethylenediamine and the water molecule have an interaction energy of −2.3 kcal/mol, while for coordinated ethylenediamine, the interacting energy spans from −4.0 to −28.0 kcal/mol depending on the metal ion and charge of the complex. The hydrogen bond energies have a good correlation with the calculated electrostatic potential on the interacting hydrogen atom. The coordination number and oxidation states of the metal have a significant influence on the electrostatic potential on the interacting hydrogen atom and the energy of hydrogen bonds.
PB  - ACS Publication
T2  - Cryst. Growth Des.
T1  - Supplementary material for: Živković, J. M., Milovanović, M. R.,& Zarić, S. D.. (2022). Hydrogen Bonds of Coordinated Ethylenediamine and a Water Molecule: Joint Crystallographic and Computational Study of Second Coordination Sphere. in Cryst. Growth Des.
ACS Publication., 22(9), 5198-5205.
https://doi.org/10.1021/acs.cgd.2c00196
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5700
ER  - 
@misc{
author = "Živković, Jelena M and Milovanović, Milan R. and Zarić, Snežana D.",
year = "2022",
abstract = "In the study of hydrogen bonds between noncoordinated and metal-coordinated ethylenediamine and a water molecule, the data in the Cambridge Structural Database (CSD) were analyzed and DFT calculations were performed. For coordinated ethylenediamine in the CSD, the analyzed distributions of dOH distances show a maximum in the range of 2.0–2.1 Å, while the angle α shows a maximum in the range of 150–160°. The DFT calculations were done for octahedral geometries of cobalt(III), copper(II), and nickel(II) complexes and square-planar geometry of palladium(II) complexes. The coordination of ethylenediamine to the metal ions strengthens its hydrogen bond with the water molecule. Namely, noncoordinated ethylenediamine and the water molecule have an interaction energy of −2.3 kcal/mol, while for coordinated ethylenediamine, the interacting energy spans from −4.0 to −28.0 kcal/mol depending on the metal ion and charge of the complex. The hydrogen bond energies have a good correlation with the calculated electrostatic potential on the interacting hydrogen atom. The coordination number and oxidation states of the metal have a significant influence on the electrostatic potential on the interacting hydrogen atom and the energy of hydrogen bonds.",
publisher = "ACS Publication",
journal = "Cryst. Growth Des.",
title = "Supplementary material for: Živković, J. M., Milovanović, M. R.,& Zarić, S. D.. (2022). Hydrogen Bonds of Coordinated Ethylenediamine and a Water Molecule: Joint Crystallographic and Computational Study of Second Coordination Sphere. in Cryst. Growth Des.
ACS Publication., 22(9), 5198-5205.
https://doi.org/10.1021/acs.cgd.2c00196",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5700"
}
Živković, J. M., Milovanović, M. R.,& Zarić, S. D.. (2022). Supplementary material for: Živković, J. M., Milovanović, M. R.,& Zarić, S. D.. (2022). Hydrogen Bonds of Coordinated Ethylenediamine and a Water Molecule: Joint Crystallographic and Computational Study of Second Coordination Sphere. in Cryst. Growth Des.
ACS Publication., 22(9), 5198-5205.
https://doi.org/10.1021/acs.cgd.2c00196. in Cryst. Growth Des.
ACS Publication..
https://hdl.handle.net/21.15107/rcub_cherry_5700
Živković JM, Milovanović MR, Zarić SD. Supplementary material for: Živković, J. M., Milovanović, M. R.,& Zarić, S. D.. (2022). Hydrogen Bonds of Coordinated Ethylenediamine and a Water Molecule: Joint Crystallographic and Computational Study of Second Coordination Sphere. in Cryst. Growth Des.
ACS Publication., 22(9), 5198-5205.
https://doi.org/10.1021/acs.cgd.2c00196. in Cryst. Growth Des.. 2022;.
https://hdl.handle.net/21.15107/rcub_cherry_5700 .
Živković, Jelena M, Milovanović, Milan R., Zarić, Snežana D., "Supplementary material for: Živković, J. M., Milovanović, M. R.,& Zarić, S. D.. (2022). Hydrogen Bonds of Coordinated Ethylenediamine and a Water Molecule: Joint Crystallographic and Computational Study of Second Coordination Sphere. in Cryst. Growth Des.
ACS Publication., 22(9), 5198-5205.
https://doi.org/10.1021/acs.cgd.2c00196" in Cryst. Growth Des. (2022),
https://hdl.handle.net/21.15107/rcub_cherry_5700 .

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB