Faculty of Chemistry Repository - Cherry
University of Belgrade - Faculty of Chemistry
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Cherry
  • Hemijski fakultet
  • Projekti
  • SYMBIOSIS
  • View Item
  •   Cherry
  • Hemijski fakultet
  • Projekti
  • SYMBIOSIS
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modelling of catalytic activity and enzyme-MOF interactions using combined in silico approach

Thumbnail
2021
Izvod iz elektronske knjige apstrakata (14.55Mb)
Authors
Senćanski, Milan
Prodanović, Radivoje
Ristić, Predrag
Balaž, Ana Marija
Stanišić, Marija
Todorović, Tamara
Conference object (Published version)
Metadata
Show full item record
Abstract
Enzymes as industrial biocatalysts offer numerous advantages over traditional chemical processes concerning sustainability and process efficiency. Immobilization of enzymes on solid supporters is one of the key strategies for improving the practical performances of enzymes. Metal-organic frameworks (MOFs) are promising candidates for enzyme immobilization. MOFs are porous coordination polymers consisting of metal-containing nodes and organic ligands linked through coordination bonds. It has been demonstrated that proteins can be successfully immobilized even in MOF pores whose apertures are smaller than the molecular dimension of the protein due to its conformational flexibility. For our study, we selected horseradish peroxidase (HRP) encapsulated in MOF PCN-888(Al). We report the modelling of PCN-888(Al) MOF and the design of novel HRP mutants, which determine their enzymatic activity and magnitude of intermolecular interactions with MOF. Using a combined in silico approach..., consisting of Informational Spectrum Method (ISM) bioinformatics method, molecular docking and molecular dynamics simulations, we propose new HRP mutants, which show higher/lower specific catalytic activity and higher/lower MOF-HRP dissociation constant, compared to the wild type of enzyme.

Keywords:
Informational Spectrum Method / molecular docking / molecular dynamics simulations / enzyme@MOF composites
Source:
Twenty-Second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro, August 30 - September 3, 2021, 2021, 124-124
Publisher:
  • Materials Research Society of Serbia
Funding / projects:
  • SYMBIOSIS - Controllable Design of Efficient Enzyme"Mof Composites for Biocatalysis (RS-6066997)
Note:
  • Book of Abstracts
[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_cherry_5749
URI
http://cherry.chem.bg.ac.rs/handle/123456789/5749
Collections
  • Publikacije
  • SYMBIOSIS
Institution/Community
Hemijski fakultet
TY  - CONF
AU  - Senćanski, Milan
AU  - Prodanović, Radivoje
AU  - Ristić, Predrag
AU  - Balaž, Ana Marija
AU  - Stanišić, Marija
AU  - Todorović, Tamara
PY  - 2021
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5749
AB  - Enzymes as industrial biocatalysts offer numerous advantages over traditional chemical processes
concerning sustainability and process efficiency. Immobilization of enzymes on solid supporters is
one of the key strategies for improving the practical performances of enzymes.
Metal-organic frameworks (MOFs) are promising candidates for enzyme immobilization. MOFs are
porous coordination polymers consisting of metal-containing nodes and organic ligands linked
through coordination bonds. It has been demonstrated that proteins can be successfully immobilized
even in MOF pores whose apertures are smaller than the molecular dimension of the protein due to its
conformational flexibility.
For our study, we selected horseradish peroxidase (HRP) encapsulated in MOF PCN-888(Al). We
report the modelling of PCN-888(Al) MOF and the design of novel HRP mutants, which determine
their enzymatic activity and magnitude of intermolecular interactions with MOF. Using a combined
in silico approach, consisting of Informational Spectrum Method (ISM) bioinformatics method,
molecular docking and molecular dynamics simulations, we propose new HRP mutants, which show
higher/lower specific catalytic activity and higher/lower MOF-HRP dissociation constant, compared
to the wild type of enzyme.
PB  - Materials Research Society of Serbia
C3  - Twenty-Second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro, August 30 - September 3, 2021
T1  - Modelling of catalytic activity and enzyme-MOF interactions using combined in silico approach
SP  - 124
EP  - 124
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5749
ER  - 
@conference{
author = "Senćanski, Milan and Prodanović, Radivoje and Ristić, Predrag and Balaž, Ana Marija and Stanišić, Marija and Todorović, Tamara",
year = "2021",
abstract = "Enzymes as industrial biocatalysts offer numerous advantages over traditional chemical processes
concerning sustainability and process efficiency. Immobilization of enzymes on solid supporters is
one of the key strategies for improving the practical performances of enzymes.
Metal-organic frameworks (MOFs) are promising candidates for enzyme immobilization. MOFs are
porous coordination polymers consisting of metal-containing nodes and organic ligands linked
through coordination bonds. It has been demonstrated that proteins can be successfully immobilized
even in MOF pores whose apertures are smaller than the molecular dimension of the protein due to its
conformational flexibility.
For our study, we selected horseradish peroxidase (HRP) encapsulated in MOF PCN-888(Al). We
report the modelling of PCN-888(Al) MOF and the design of novel HRP mutants, which determine
their enzymatic activity and magnitude of intermolecular interactions with MOF. Using a combined
in silico approach, consisting of Informational Spectrum Method (ISM) bioinformatics method,
molecular docking and molecular dynamics simulations, we propose new HRP mutants, which show
higher/lower specific catalytic activity and higher/lower MOF-HRP dissociation constant, compared
to the wild type of enzyme.",
publisher = "Materials Research Society of Serbia",
journal = "Twenty-Second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro, August 30 - September 3, 2021",
title = "Modelling of catalytic activity and enzyme-MOF interactions using combined in silico approach",
pages = "124-124",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5749"
}
Senćanski, M., Prodanović, R., Ristić, P., Balaž, A. M., Stanišić, M.,& Todorović, T.. (2021). Modelling of catalytic activity and enzyme-MOF interactions using combined in silico approach. in Twenty-Second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro, August 30 - September 3, 2021
Materials Research Society of Serbia., 124-124.
https://hdl.handle.net/21.15107/rcub_cherry_5749
Senćanski M, Prodanović R, Ristić P, Balaž AM, Stanišić M, Todorović T. Modelling of catalytic activity and enzyme-MOF interactions using combined in silico approach. in Twenty-Second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro, August 30 - September 3, 2021. 2021;:124-124.
https://hdl.handle.net/21.15107/rcub_cherry_5749 .
Senćanski, Milan, Prodanović, Radivoje, Ristić, Predrag, Balaž, Ana Marija, Stanišić, Marija, Todorović, Tamara, "Modelling of catalytic activity and enzyme-MOF interactions using combined in silico approach" in Twenty-Second Annual Conference YUCOMAT 2021, Herceg Novi, Montenegro, August 30 - September 3, 2021 (2021):124-124,
https://hdl.handle.net/21.15107/rcub_cherry_5749 .

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB