Faculty of Chemistry Repository - Cherry
University of Belgrade - Faculty of Chemistry
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Antimicrobial potency of Ru(II) arene based pyridil complexes

Thumbnail
2022
Antimicrobial_potency_of_pub_2022.pdf (467.5Kb)
Authors
Nikolić, Stefan
Dimitrijević, Marija
Poljarević, Jelena
Mihajlović-Lalić, Ljiljana
Grgurić-Šipka, Sanja
Conference object (Published version)
Metadata
Show full item record
Abstract
Discover a new class of ruthenium-based complexes that were investigated as potential antimicrobial agents: dinuclear polypyridil ruthenium(II) complexes exhibited excellent growth inhibition, and Ru(II) arene complexes with acetyl pyridine ligands exhibited moderate antimicrobial activity in the panel of bacteria1. Here we have synthesized 14 new Ru(II) arene complexes with pyridine-based ligands and examined their antimicrobial potency, trying to correlate their structure and biological activity. Reported complexes were obtained in a reaction of [Ru(η6-benzene)Cl(μ-Cl)]2 or [Ru(η6-toluene)Cl(μ-Cl)]2 with halogen derivatives of picolinic acid or pyridine dicarboxylic acids in a 1:2 molar ratio in ethanol. The complexes were soluble in DMSO and water. Their structural characterization included IR and NMR spectroscopy and MS spectrometry, and purity was confirmed by elemental analysis. In this report, we demonstrate the activities of these novel compounds against six typical gram-negati...ve and two gram-positive bacteria. A micro-well dilution assay was used to determine the minimum inhibitory concentration (MIC), and minimum bactericidal concentration. Streptomycin and chloramphenicol, commercial antibiotics, were used as a positive control. The best activity of all tested bacteria was observed against E. coli, with a MIC value of 1.25 mg/mL, for C3, C6, and C10 complexes. Also, all synthesized complexes showed the same activity against C. albicans.

Source:
Serbian Biochemical Society Eleventh Conference “Amazing Biochemistry”, September 22nd and 23rd, 2022, Novi Sad, Serbia, 2022, 110-110
Publisher:
  • Belgrade : Faculty of Chemistry
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200288 (Innovation Center of the Faculty of Chemistry) (RS-200288)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_cherry_5821
URI
http://cherry.chem.bg.ac.rs/handle/123456789/5821
Collections
  • Publikacije
Institution/Community
Hemijski fakultet
TY  - CONF
AU  - Nikolić, Stefan
AU  - Dimitrijević, Marija
AU  - Poljarević, Jelena
AU  - Mihajlović-Lalić, Ljiljana
AU  - Grgurić-Šipka, Sanja
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5821
AB  - Discover a new class of ruthenium-based complexes that were investigated as potential antimicrobial agents: dinuclear polypyridil ruthenium(II) complexes exhibited excellent growth inhibition, and Ru(II) arene complexes with acetyl pyridine ligands exhibited moderate antimicrobial activity in the panel of bacteria1. Here we have synthesized 14 new Ru(II) arene complexes with pyridine-based ligands and examined their antimicrobial potency, trying to correlate their structure and biological activity. Reported complexes were obtained in a reaction of [Ru(η6-benzene)Cl(μ-Cl)]2 or [Ru(η6-toluene)Cl(μ-Cl)]2 with halogen derivatives of picolinic acid or pyridine dicarboxylic acids in a 1:2 molar ratio in ethanol. The complexes were soluble in DMSO and water. Their structural characterization included IR and NMR spectroscopy and MS spectrometry, and purity was confirmed by elemental analysis. In this report, we demonstrate the activities of these novel compounds against six typical gram-negative and two gram-positive bacteria. A micro-well dilution assay was used to determine the minimum inhibitory concentration (MIC), and minimum bactericidal concentration. Streptomycin and chloramphenicol, commercial antibiotics, were used as a positive control. The best activity of all tested bacteria was observed against E. coli, with a MIC value of 1.25 mg/mL, for C3, C6, and C10 complexes. Also, all synthesized complexes showed the same activity against C. albicans.
PB  - Belgrade : Faculty of Chemistry
C3  - Serbian Biochemical Society Eleventh Conference “Amazing Biochemistry”, September 22nd and 23rd, 2022, Novi Sad, Serbia
T1  - Antimicrobial potency of Ru(II) arene based pyridil complexes
SP  - 110
EP  - 110
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5821
ER  - 
@conference{
author = "Nikolić, Stefan and Dimitrijević, Marija and Poljarević, Jelena and Mihajlović-Lalić, Ljiljana and Grgurić-Šipka, Sanja",
year = "2022",
abstract = "Discover a new class of ruthenium-based complexes that were investigated as potential antimicrobial agents: dinuclear polypyridil ruthenium(II) complexes exhibited excellent growth inhibition, and Ru(II) arene complexes with acetyl pyridine ligands exhibited moderate antimicrobial activity in the panel of bacteria1. Here we have synthesized 14 new Ru(II) arene complexes with pyridine-based ligands and examined their antimicrobial potency, trying to correlate their structure and biological activity. Reported complexes were obtained in a reaction of [Ru(η6-benzene)Cl(μ-Cl)]2 or [Ru(η6-toluene)Cl(μ-Cl)]2 with halogen derivatives of picolinic acid or pyridine dicarboxylic acids in a 1:2 molar ratio in ethanol. The complexes were soluble in DMSO and water. Their structural characterization included IR and NMR spectroscopy and MS spectrometry, and purity was confirmed by elemental analysis. In this report, we demonstrate the activities of these novel compounds against six typical gram-negative and two gram-positive bacteria. A micro-well dilution assay was used to determine the minimum inhibitory concentration (MIC), and minimum bactericidal concentration. Streptomycin and chloramphenicol, commercial antibiotics, were used as a positive control. The best activity of all tested bacteria was observed against E. coli, with a MIC value of 1.25 mg/mL, for C3, C6, and C10 complexes. Also, all synthesized complexes showed the same activity against C. albicans.",
publisher = "Belgrade : Faculty of Chemistry",
journal = "Serbian Biochemical Society Eleventh Conference “Amazing Biochemistry”, September 22nd and 23rd, 2022, Novi Sad, Serbia",
title = "Antimicrobial potency of Ru(II) arene based pyridil complexes",
pages = "110-110",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5821"
}
Nikolić, S., Dimitrijević, M., Poljarević, J., Mihajlović-Lalić, L.,& Grgurić-Šipka, S.. (2022). Antimicrobial potency of Ru(II) arene based pyridil complexes. in Serbian Biochemical Society Eleventh Conference “Amazing Biochemistry”, September 22nd and 23rd, 2022, Novi Sad, Serbia
Belgrade : Faculty of Chemistry., 110-110.
https://hdl.handle.net/21.15107/rcub_cherry_5821
Nikolić S, Dimitrijević M, Poljarević J, Mihajlović-Lalić L, Grgurić-Šipka S. Antimicrobial potency of Ru(II) arene based pyridil complexes. in Serbian Biochemical Society Eleventh Conference “Amazing Biochemistry”, September 22nd and 23rd, 2022, Novi Sad, Serbia. 2022;:110-110.
https://hdl.handle.net/21.15107/rcub_cherry_5821 .
Nikolić, Stefan, Dimitrijević, Marija, Poljarević, Jelena, Mihajlović-Lalić, Ljiljana, Grgurić-Šipka, Sanja, "Antimicrobial potency of Ru(II) arene based pyridil complexes" in Serbian Biochemical Society Eleventh Conference “Amazing Biochemistry”, September 22nd and 23rd, 2022, Novi Sad, Serbia (2022):110-110,
https://hdl.handle.net/21.15107/rcub_cherry_5821 .

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB