Faculty of Chemistry Repository - Cherry
University of Belgrade - Faculty of Chemistry
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
  •   Cherry
  • Hemijski fakultet
  • Publikacije
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles

Thumbnail
2023
Dorm_Life-2023.pdf (12.44Mb)
Authors
Dorm, Bruna Carolina
Iemma, Mônica Rosas Costa
Neto, Benedito Domingos
Francisco, Rauany Cristina Lopes
Dinić, Ivana
Ignjatović, Nenad
Marković, Smilja
Vuković, Marina
Škapin, Srečo
Trovatti, Eliane
Mančić, Lidija
Article (Published version)
Metadata
Show full item record
Abstract
Hydroxyapatite attracts great attention as hard tissues implant material for bones and teeth. Its application in reconstructive medicine depends on its biocompatibility, which is in a function of composition and surface properties. The insertion of a protein element in the composition of implants can improve the cell adhesion and the osseointegration. Having this in mind, the proposal of this work was to develop L-alanine-grafted hydroxyapatite nanoparticles and to study their biocompatibility. Two L-alanine sources and three grafting methods were used for hydroxyapatite surface functionalization. The efficiency of grafting was determined based on X-ray powder diffraction, Fourier-transform infrared spectroscopy, thermal analyses, and field-emission scanning electron microscopy. The results indicated the formation of hydroxyapatite with 8–25 wt% of organic content, depending on the grafting method. Protein adsorption, cell adhesion, and viability studies were carried out to evaluate bi...ological properties of grafted materials. The viability of MG-63 human osteoblastic cells following 24 h incubation with the alanine-grafted hydroxyapatite samples is well preserved, being in all cases above the viability of cells incubated with hydroxyapatite. The alanine-grafted hydroxyapatite prepared in situ and by simple mixture showed higher protein adsorption and cell adhesion, respectively, indicating their potential toward use in regenerative medicine.

Source:
Life, 2023, 13, 1, 116-
Funding / projects:
  • São Paulo Research Foundation, FAPESP [research project funding 2017-18782-6 and 2019-25318-0]
  • BCD grant 2020-09059-
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200175 (Institute of Technical Sciences of SASA, Belgrade) (RS-200175)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200288 (Innovation Center of the Faculty of Chemistry) (RS-200288)

DOI: 10.3390/life13010116

ISSN: 2075-1729

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_dais_13685
URI
http://cherry.chem.bg.ac.rs/handle/123456789/5838
Collections
  • Publikacije
Institution/Community
Hemijski fakultet
TY  - JOUR
AU  - Dorm, Bruna Carolina
AU  - Iemma, Mônica Rosas Costa
AU  - Neto, Benedito Domingos
AU  - Francisco, Rauany Cristina Lopes
AU  - Dinić, Ivana
AU  - Ignjatović, Nenad
AU  - Marković, Smilja
AU  - Vuković, Marina
AU  - Škapin, Srečo
AU  - Trovatti, Eliane
AU  - Mančić, Lidija
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5838
AB  - Hydroxyapatite attracts great attention as hard tissues implant material for bones and teeth. Its application in reconstructive medicine depends on its biocompatibility, which is in a function of composition and surface properties. The insertion of a protein element in the composition of implants can improve the cell adhesion and the osseointegration. Having this in mind, the proposal of this work was to develop L-alanine-grafted hydroxyapatite nanoparticles and to study their biocompatibility. Two L-alanine sources and three grafting methods were used for hydroxyapatite surface functionalization. The efficiency of grafting was determined based on X-ray powder diffraction, Fourier-transform infrared spectroscopy, thermal analyses, and field-emission scanning electron microscopy. The results indicated the formation of hydroxyapatite with 8–25 wt% of organic content, depending on the grafting method. Protein adsorption, cell adhesion, and viability studies were carried out to evaluate biological properties of grafted materials. The viability of MG-63 human osteoblastic cells following 24 h incubation with the alanine-grafted hydroxyapatite samples is well preserved, being in all cases above the viability of cells incubated with hydroxyapatite. The alanine-grafted hydroxyapatite prepared in situ and by simple mixture showed higher protein adsorption and cell adhesion, respectively, indicating their potential toward use in regenerative medicine.
T2  - Life
T1  - Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles
VL  - 13
IS  - 1
SP  - 116
DO  - 10.3390/life13010116
UR  - https://hdl.handle.net/21.15107/rcub_dais_13685
ER  - 
@article{
author = "Dorm, Bruna Carolina and Iemma, Mônica Rosas Costa and Neto, Benedito Domingos and Francisco, Rauany Cristina Lopes and Dinić, Ivana and Ignjatović, Nenad and Marković, Smilja and Vuković, Marina and Škapin, Srečo and Trovatti, Eliane and Mančić, Lidija",
year = "2023",
abstract = "Hydroxyapatite attracts great attention as hard tissues implant material for bones and teeth. Its application in reconstructive medicine depends on its biocompatibility, which is in a function of composition and surface properties. The insertion of a protein element in the composition of implants can improve the cell adhesion and the osseointegration. Having this in mind, the proposal of this work was to develop L-alanine-grafted hydroxyapatite nanoparticles and to study their biocompatibility. Two L-alanine sources and three grafting methods were used for hydroxyapatite surface functionalization. The efficiency of grafting was determined based on X-ray powder diffraction, Fourier-transform infrared spectroscopy, thermal analyses, and field-emission scanning electron microscopy. The results indicated the formation of hydroxyapatite with 8–25 wt% of organic content, depending on the grafting method. Protein adsorption, cell adhesion, and viability studies were carried out to evaluate biological properties of grafted materials. The viability of MG-63 human osteoblastic cells following 24 h incubation with the alanine-grafted hydroxyapatite samples is well preserved, being in all cases above the viability of cells incubated with hydroxyapatite. The alanine-grafted hydroxyapatite prepared in situ and by simple mixture showed higher protein adsorption and cell adhesion, respectively, indicating their potential toward use in regenerative medicine.",
journal = "Life",
title = "Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles",
volume = "13",
number = "1",
pages = "116",
doi = "10.3390/life13010116",
url = "https://hdl.handle.net/21.15107/rcub_dais_13685"
}
Dorm, B. C., Iemma, M. R. C., Neto, B. D., Francisco, R. C. L., Dinić, I., Ignjatović, N., Marković, S., Vuković, M., Škapin, S., Trovatti, E.,& Mančić, L.. (2023). Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles. in Life, 13(1), 116.
https://doi.org/10.3390/life13010116
https://hdl.handle.net/21.15107/rcub_dais_13685
Dorm BC, Iemma MRC, Neto BD, Francisco RCL, Dinić I, Ignjatović N, Marković S, Vuković M, Škapin S, Trovatti E, Mančić L. Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles. in Life. 2023;13(1):116.
doi:10.3390/life13010116
https://hdl.handle.net/21.15107/rcub_dais_13685 .
Dorm, Bruna Carolina, Iemma, Mônica Rosas Costa, Neto, Benedito Domingos, Francisco, Rauany Cristina Lopes, Dinić, Ivana, Ignjatović, Nenad, Marković, Smilja, Vuković, Marina, Škapin, Srečo, Trovatti, Eliane, Mančić, Lidija, "Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles" in Life, 13, no. 1 (2023):116,
https://doi.org/10.3390/life13010116 .,
https://hdl.handle.net/21.15107/rcub_dais_13685 .

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB