Faculty of Chemistry Repository - Cherry
University of Belgrade - Faculty of Chemistry
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Cherry
  • Inovacioni centar / Innovation Centre
  • Publikacije / Publications
  • View Item
  •   Cherry
  • Inovacioni centar / Innovation Centre
  • Publikacije / Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interaction of organoruthenium(II)-polypyridyl complexes with DNA and BSA

Thumbnail
2022
bitstream_32670.pdf (1.850Mb)
Authors
Margetić, Aleksandra
Nikolić, Stefan
Grgurić-Šipka, Sanja
Vujčić, Miroslava
Article (Published version)
Metadata
Show full item record
Abstract
The interaction of four arene ruthenium complexes [(η6-p-cymene)Ru(Me2dppz)Cl]PF6 (1) with Me2dppz = 11,12-dimethyldipyrido[3,2-a:2′,3′-c] phenazine, [(η6-p-cymene)Ru(aip)Cl]PF6 (2) with aip = 2-(9-anthryl)-1H-imidazo[4,5-f][1,10] phenanthroline), ([(ƞ6-toluene)Ru(ppf)Cl]PF6) (3) and ([(ƞ6-pcymene) Ru(ppf)Cl]PF6) (4) with ppf = pyrido[2′,3′:5,6] pyrazino[2,3-f][1,10]phenanthroline with calf thymus DNA were investigated. All of four complexes exhibit DNA-binding activity. UV–Vis spectroscopic studies revealed the intrinsic binding constants of the order 104 M− 1 of magnitude, indicating non-intercalative mode. Fluorescence quenching analysis showed that all complexes interfere with intercalator ethidium bromide and minor groove binder Hoechst 33258 by a singular non-intercalative mode with extent that differs by two orders of magnitude. Gel electrophoresis results on DNA cleavage assay demonstrated that all complexes produced conformational changes of supercoiled ci...rcular plasmid pUC19 in concentration dependent way. The results of fluorescence titration bovine serum albumin by 1, 2, 3 and 4 showed that all complexes significantly quench tryptophan residues fluorescence through a static quenching mechanism. The antimicrobial activity against both Gram-positive and Gram-negative bacteria analyzed. Complex 1 was most active, even on Escherichia coli was more active than positive control compound.

Keywords:
Ruthenium(II)-arene complexes / DNA binding study / DNA cleavage experiments / Antimicrobial activity
Source:
Biometals, 2022, 35, 813-829
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200288 (Innovation Center of the Faculty of Chemistry) (RS-200288)

DOI: 10.1007/s10534-022-00404-6

ISSN: 0966-0844

[ Google Scholar ]
URI
http://cherry.chem.bg.ac.rs/handle/123456789/5859
Collections
  • Publikacije / Publications
Institution/Community
Inovacioni centar / Innovation Centre
TY  - JOUR
AU  - Margetić, Aleksandra
AU  - Nikolić, Stefan
AU  - Grgurić-Šipka, Sanja
AU  - Vujčić, Miroslava
PY  - 2022
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5859
AB  - The interaction of four arene ruthenium
complexes [(η6-p-cymene)Ru(Me2dppz)Cl]PF6 (1)
with Me2dppz
= 11,12-dimethyldipyrido[3,2-a:2′,3′-c]
phenazine, [(η6-p-cymene)Ru(aip)Cl]PF6 (2) with
aip = 2-(9-anthryl)-1H-imidazo[4,5-f][1,10] phenanthroline),
([(ƞ6-toluene)Ru(ppf)Cl]PF6) (3) and ([(ƞ6-pcymene)
Ru(ppf)Cl]PF6) (4) with ppf = pyrido[2′,3′:5,6]
pyrazino[2,3-f][1,10]phenanthroline with calf thymus
DNA were investigated. All of four complexes exhibit
DNA-binding activity. UV–Vis spectroscopic studies
revealed the intrinsic binding constants of the order
104
M−
1 of magnitude, indicating non-intercalative
mode. Fluorescence quenching analysis showed that all
complexes interfere with intercalator ethidium bromide
and minor groove binder Hoechst 33258 by a singular
non-intercalative mode with extent that differs by two
orders of magnitude. Gel electrophoresis results on DNA cleavage assay demonstrated that all complexes
produced conformational changes of supercoiled
circular plasmid pUC19 in concentration dependent
way. The results of fluorescence titration bovine
serum albumin by 1, 2, 3 and 4 showed that all complexes
significantly quench tryptophan residues fluorescence
through a static quenching mechanism. The
antimicrobial activity against both Gram-positive and
Gram-negative bacteria analyzed. Complex 1 was most
active, even on Escherichia coli was more active than
positive control compound.
T2  - Biometals
T1  - Interaction of organoruthenium(II)-polypyridyl complexes with DNA and BSA
VL  - 35
SP  - 813
EP  - 829
DO  - 10.1007/s10534-022-00404-6
ER  - 
@article{
author = "Margetić, Aleksandra and Nikolić, Stefan and Grgurić-Šipka, Sanja and Vujčić, Miroslava",
year = "2022",
abstract = "The interaction of four arene ruthenium
complexes [(η6-p-cymene)Ru(Me2dppz)Cl]PF6 (1)
with Me2dppz
= 11,12-dimethyldipyrido[3,2-a:2′,3′-c]
phenazine, [(η6-p-cymene)Ru(aip)Cl]PF6 (2) with
aip = 2-(9-anthryl)-1H-imidazo[4,5-f][1,10] phenanthroline),
([(ƞ6-toluene)Ru(ppf)Cl]PF6) (3) and ([(ƞ6-pcymene)
Ru(ppf)Cl]PF6) (4) with ppf = pyrido[2′,3′:5,6]
pyrazino[2,3-f][1,10]phenanthroline with calf thymus
DNA were investigated. All of four complexes exhibit
DNA-binding activity. UV–Vis spectroscopic studies
revealed the intrinsic binding constants of the order
104
M−
1 of magnitude, indicating non-intercalative
mode. Fluorescence quenching analysis showed that all
complexes interfere with intercalator ethidium bromide
and minor groove binder Hoechst 33258 by a singular
non-intercalative mode with extent that differs by two
orders of magnitude. Gel electrophoresis results on DNA cleavage assay demonstrated that all complexes
produced conformational changes of supercoiled
circular plasmid pUC19 in concentration dependent
way. The results of fluorescence titration bovine
serum albumin by 1, 2, 3 and 4 showed that all complexes
significantly quench tryptophan residues fluorescence
through a static quenching mechanism. The
antimicrobial activity against both Gram-positive and
Gram-negative bacteria analyzed. Complex 1 was most
active, even on Escherichia coli was more active than
positive control compound.",
journal = "Biometals",
title = "Interaction of organoruthenium(II)-polypyridyl complexes with DNA and BSA",
volume = "35",
pages = "813-829",
doi = "10.1007/s10534-022-00404-6"
}
Margetić, A., Nikolić, S., Grgurić-Šipka, S.,& Vujčić, M.. (2022). Interaction of organoruthenium(II)-polypyridyl complexes with DNA and BSA. in Biometals, 35, 813-829.
https://doi.org/10.1007/s10534-022-00404-6
Margetić A, Nikolić S, Grgurić-Šipka S, Vujčić M. Interaction of organoruthenium(II)-polypyridyl complexes with DNA and BSA. in Biometals. 2022;35:813-829.
doi:10.1007/s10534-022-00404-6 .
Margetić, Aleksandra, Nikolić, Stefan, Grgurić-Šipka, Sanja, Vujčić, Miroslava, "Interaction of organoruthenium(II)-polypyridyl complexes with DNA and BSA" in Biometals, 35 (2022):813-829,
https://doi.org/10.1007/s10534-022-00404-6 . .

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB