Faculty of Chemistry Repository - Cherry
University of Belgrade - Faculty of Chemistry
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Cherry
  • Hemijski fakultet / Faculty of Chemistry
  • Publikacije / Publications
  • View Item
  •   Cherry
  • Hemijski fakultet / Faculty of Chemistry
  • Publikacije / Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Zn(II) complexes with pyridyl-based 1,3-selen/thiazolyl-hydrazones: A comparative study

Authorized Users Only
2023
Authors
Višnjevac, Aleksandar
Araškov, Jovana
Nikolić, Milan
Bojić-Trbojević, Žanka
Pirković, Andrea
Dekanski, Dragana
Mitić, Dragana
Blagojević, Vladimir A.
Filipović, Nenad R.
Todorović, Tamara
Article (Published version)
Metadata
Show full item record
Abstract
The Zn(II) complexes [Zn(HLSe2)2](NO3)2∙CH3OH (2-NO3-Se) and [Zn(HLSe3)2](NO3)2·DMF (3-NO3-Se) with selenazolyl-hydrazone ligands 4-(4-methoxyphenyl)-2-(2-(pyridin-2-ylmethylene)hydrazinyl)-1,3-selenazole (HLSe2) and 4-(4-methylphenyl)-2-(2-(pyridin-2-ylmethylene)hydrazinyl)-1,3-selenazole (HLSe3) have been synthesized and characterized using singe crystal X-ray diffraction analysis. Antiproliferative activities of 2-NO3-Se and 3-NO3-Se, the corresponding ligands and sulphur isosteres of the complexes and the ligands were determined on non-malignant HTR-8/SVneo extravillous trophoblast cell line and malignant JEG-3 and JAr choriocarcinoma cell lines. All Zn complexes exhibited cytotoxic effect, comparable to that of a reference metal-based drug, cisplatin. The antioxidant activity of all compounds was determined in three antioxidant assays: ORAC (Oxygen Radical Absorbance Capacity), ABTS [(2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt] and CERAC [Ce(IV)-based ...reducing capacity]. As a result of synergy between Zn(II) and selenazolyl-hydrazone ligands, the complexes 2-NO3-Se and 3-NO3-Se appeared to be more active than Trolox, which is not the case for their sulfur counterparts. In-silico calculations of ADME properties pointed that the compounds possess some of desirable Lipinski rule principles. Applied algorithms did not report the compounds as potential PAINS or covalent inhibitors, although due to high molecular weight none of the compounds represent a potential lead compound. Toxicity prediction of the compounds is performed using machine learning models. The complexation of the ligands most likely reduces their toxicity or reduces their negative metabolic effects.

Keywords:
ADMET / Antioxidant activity / Antiproliferative activity / Selenazolyl-hydrazones / Thiazolyl-hydrazones / Zn(II) complexes
Source:
Journal of Molecular Structure, 2023, 1281, 135193-
Publisher:
  • Elsevier
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200288 (Innovation Center of the Faculty of Chemistry) (RS-200288)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200116 (University of Belgrade, Faculty of Agriculture) (RS-200116)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200019 (University of Belgrade, Institute for the Application of Nuclear Energy - INEP) (RS-200019)

DOI: 10.1016/j.molstruc.2023.135193

ISSN: 0022-2860

Scopus: 2-s2.0-85148545690
[ Google Scholar ]
URI
http://cherry.chem.bg.ac.rs/handle/123456789/5877
Collections
  • Publikacije / Publications
Institution/Community
Hemijski fakultet / Faculty of Chemistry
TY  - JOUR
AU  - Višnjevac, Aleksandar
AU  - Araškov, Jovana
AU  - Nikolić, Milan
AU  - Bojić-Trbojević, Žanka
AU  - Pirković, Andrea
AU  - Dekanski, Dragana
AU  - Mitić, Dragana
AU  - Blagojević, Vladimir A.
AU  - Filipović, Nenad R.
AU  - Todorović, Tamara
PY  - 2023
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/5877
AB  - The Zn(II) complexes [Zn(HLSe2)2](NO3)2∙CH3OH (2-NO3-Se) and [Zn(HLSe3)2](NO3)2·DMF (3-NO3-Se) with selenazolyl-hydrazone ligands 4-(4-methoxyphenyl)-2-(2-(pyridin-2-ylmethylene)hydrazinyl)-1,3-selenazole (HLSe2) and 4-(4-methylphenyl)-2-(2-(pyridin-2-ylmethylene)hydrazinyl)-1,3-selenazole (HLSe3) have been synthesized and characterized using singe crystal X-ray diffraction analysis. Antiproliferative activities of 2-NO3-Se and 3-NO3-Se, the corresponding ligands and sulphur isosteres of the complexes and the ligands were determined on non-malignant HTR-8/SVneo extravillous trophoblast cell line and malignant JEG-3 and JAr choriocarcinoma cell lines. All Zn complexes exhibited cytotoxic effect, comparable to that of a reference metal-based drug, cisplatin. The antioxidant activity of all compounds was determined in three antioxidant assays: ORAC (Oxygen Radical Absorbance Capacity), ABTS [(2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt] and CERAC [Ce(IV)-based reducing capacity]. As a result of synergy between Zn(II) and selenazolyl-hydrazone ligands, the complexes 2-NO3-Se and 3-NO3-Se appeared to be more active than Trolox, which is not the case for their sulfur counterparts. In-silico calculations of ADME properties pointed that the compounds possess some of desirable Lipinski rule principles. Applied algorithms did not report the compounds as potential PAINS or covalent inhibitors, although due to high molecular weight none of the compounds represent a potential lead compound. Toxicity prediction of the compounds is performed using machine learning models. The complexation of the ligands most likely reduces their toxicity or reduces their negative metabolic effects.
PB  - Elsevier
T2  - Journal of Molecular Structure
T2  - Journal of Molecular StructureJournal of Molecular Structure
T1  - Zn(II) complexes with pyridyl-based 1,3-selen/thiazolyl-hydrazones: A comparative study
VL  - 1281
SP  - 135193
DO  - 10.1016/j.molstruc.2023.135193
ER  - 
@article{
author = "Višnjevac, Aleksandar and Araškov, Jovana and Nikolić, Milan and Bojić-Trbojević, Žanka and Pirković, Andrea and Dekanski, Dragana and Mitić, Dragana and Blagojević, Vladimir A. and Filipović, Nenad R. and Todorović, Tamara",
year = "2023",
abstract = "The Zn(II) complexes [Zn(HLSe2)2](NO3)2∙CH3OH (2-NO3-Se) and [Zn(HLSe3)2](NO3)2·DMF (3-NO3-Se) with selenazolyl-hydrazone ligands 4-(4-methoxyphenyl)-2-(2-(pyridin-2-ylmethylene)hydrazinyl)-1,3-selenazole (HLSe2) and 4-(4-methylphenyl)-2-(2-(pyridin-2-ylmethylene)hydrazinyl)-1,3-selenazole (HLSe3) have been synthesized and characterized using singe crystal X-ray diffraction analysis. Antiproliferative activities of 2-NO3-Se and 3-NO3-Se, the corresponding ligands and sulphur isosteres of the complexes and the ligands were determined on non-malignant HTR-8/SVneo extravillous trophoblast cell line and malignant JEG-3 and JAr choriocarcinoma cell lines. All Zn complexes exhibited cytotoxic effect, comparable to that of a reference metal-based drug, cisplatin. The antioxidant activity of all compounds was determined in three antioxidant assays: ORAC (Oxygen Radical Absorbance Capacity), ABTS [(2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt] and CERAC [Ce(IV)-based reducing capacity]. As a result of synergy between Zn(II) and selenazolyl-hydrazone ligands, the complexes 2-NO3-Se and 3-NO3-Se appeared to be more active than Trolox, which is not the case for their sulfur counterparts. In-silico calculations of ADME properties pointed that the compounds possess some of desirable Lipinski rule principles. Applied algorithms did not report the compounds as potential PAINS or covalent inhibitors, although due to high molecular weight none of the compounds represent a potential lead compound. Toxicity prediction of the compounds is performed using machine learning models. The complexation of the ligands most likely reduces their toxicity or reduces their negative metabolic effects.",
publisher = "Elsevier",
journal = "Journal of Molecular Structure, Journal of Molecular StructureJournal of Molecular Structure",
title = "Zn(II) complexes with pyridyl-based 1,3-selen/thiazolyl-hydrazones: A comparative study",
volume = "1281",
pages = "135193",
doi = "10.1016/j.molstruc.2023.135193"
}
Višnjevac, A., Araškov, J., Nikolić, M., Bojić-Trbojević, Ž., Pirković, A., Dekanski, D., Mitić, D., Blagojević, V. A., Filipović, N. R.,& Todorović, T.. (2023). Zn(II) complexes with pyridyl-based 1,3-selen/thiazolyl-hydrazones: A comparative study. in Journal of Molecular Structure
Elsevier., 1281, 135193.
https://doi.org/10.1016/j.molstruc.2023.135193
Višnjevac A, Araškov J, Nikolić M, Bojić-Trbojević Ž, Pirković A, Dekanski D, Mitić D, Blagojević VA, Filipović NR, Todorović T. Zn(II) complexes with pyridyl-based 1,3-selen/thiazolyl-hydrazones: A comparative study. in Journal of Molecular Structure. 2023;1281:135193.
doi:10.1016/j.molstruc.2023.135193 .
Višnjevac, Aleksandar, Araškov, Jovana, Nikolić, Milan, Bojić-Trbojević, Žanka, Pirković, Andrea, Dekanski, Dragana, Mitić, Dragana, Blagojević, Vladimir A., Filipović, Nenad R., Todorović, Tamara, "Zn(II) complexes with pyridyl-based 1,3-selen/thiazolyl-hydrazones: A comparative study" in Journal of Molecular Structure, 1281 (2023):135193,
https://doi.org/10.1016/j.molstruc.2023.135193 . .

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CHERRY - CHEmistry RepositoRY | Send Feedback

re3dataOpenAIRERCUB