A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones
Authorized Users Only
2023
Authors
Kokanov, Sanja B.Filipović, Nenad R.
Višnjevac, Aleksandar
Nikolić, Milan

Novaković, Irena
Janjić, Goran
Holló, Berta Barta
Ramotowska, Sandra
Nowicka, Paulina
Makowski, Mariusz
Uğuz, Özlem
Koca, Atıf
Todorović, Tamara

Article (Published version)

Metadata
Show full item recordAbstract
Interest in Cd complexes has been growing in recent years. Cd complexes are considered a potential solution in the search for novel antibiotics that can fight antimicrobial resistance. In addition, Cd complexes draw attention to material chemistry. The main objective of this work was to prepare the first Cd(II) complexes with anionic forms of pyridine-based thiazolyl hydrazone (THs) ligands HLS2 [(E)-4-(4-methoxyphenyl)-2-(2-[pyridine-2-ylmethylene]hydrazinyl)thiazole] and HLS3 [(E)-2-(2-[pyridine-2-ylmethylene]hydrazinyl)-4-(p-tolyl)thiazole] and perform their structural and spectroscopic characterization, as well as stability in solution and upon heating. Studies related to their biological activities and possible electrochromic applications are also being conducted. Complexes [Cd(HLS2)2] (1) and [Cd(HLS3)2] (2) have been characterized by a single-crystal X-ray diffraction and computational analysis of intermolecular interactions responsible for their solid-state structures was perfo...rmed. Thermal stability of 1 and 2 in the solid-state was analyzed by TGA/MS, where as their solution stability was determined by the spectrophotometric titration method. Electrochemical and in situ UV–Vis spectroelectrochemical analyses of 1 and 2 were carried out to determine redox mechanisms and the influence of the substituents and electrolytes on their redox responses. The antioxidant capacity of both complexes was tested in antioxidant assays, while their antimicrobial activity was tested against five Gram-positive and four Gram-negative bacteria, as well as against three fungi. The obtained results indicate their potent antioxidant capacity. The antimicrobial activity of investigated compounds on almost all tested bacterial strains was stronger than that of the standard antibiotic erythromycin. The results of docking studies indicate that the minor groove DNA is the possible biological target of 1 and 2.
Keywords:
antimicrobial activity / Cd(II) complex / docking / in situ spectroelectrochemistry / thiazolyl hydrazonesSource:
Applied Organometallic Chemistry, 2023, 37, 1Publisher:
- Wiley
Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200116 (University of Belgrade, Faculty of Agriculture) (RS-200116)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200125 (University of Novi Sad, Faculty of Science) (RS-200125)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
DOI: 10.1002/aoc.6942
ISSN: 0268-2605; 1099-0739
WoS: 000879640200001
Scopus: 2-s2.0-85141531785
Collections
Institution/Community
Hemijski fakultet / Faculty of ChemistryTY - JOUR AU - Kokanov, Sanja B. AU - Filipović, Nenad R. AU - Višnjevac, Aleksandar AU - Nikolić, Milan AU - Novaković, Irena AU - Janjić, Goran AU - Holló, Berta Barta AU - Ramotowska, Sandra AU - Nowicka, Paulina AU - Makowski, Mariusz AU - Uğuz, Özlem AU - Koca, Atıf AU - Todorović, Tamara PY - 2023 UR - http://cherry.chem.bg.ac.rs/handle/123456789/5986 AB - Interest in Cd complexes has been growing in recent years. Cd complexes are considered a potential solution in the search for novel antibiotics that can fight antimicrobial resistance. In addition, Cd complexes draw attention to material chemistry. The main objective of this work was to prepare the first Cd(II) complexes with anionic forms of pyridine-based thiazolyl hydrazone (THs) ligands HLS2 [(E)-4-(4-methoxyphenyl)-2-(2-[pyridine-2-ylmethylene]hydrazinyl)thiazole] and HLS3 [(E)-2-(2-[pyridine-2-ylmethylene]hydrazinyl)-4-(p-tolyl)thiazole] and perform their structural and spectroscopic characterization, as well as stability in solution and upon heating. Studies related to their biological activities and possible electrochromic applications are also being conducted. Complexes [Cd(HLS2)2] (1) and [Cd(HLS3)2] (2) have been characterized by a single-crystal X-ray diffraction and computational analysis of intermolecular interactions responsible for their solid-state structures was performed. Thermal stability of 1 and 2 in the solid-state was analyzed by TGA/MS, where as their solution stability was determined by the spectrophotometric titration method. Electrochemical and in situ UV–Vis spectroelectrochemical analyses of 1 and 2 were carried out to determine redox mechanisms and the influence of the substituents and electrolytes on their redox responses. The antioxidant capacity of both complexes was tested in antioxidant assays, while their antimicrobial activity was tested against five Gram-positive and four Gram-negative bacteria, as well as against three fungi. The obtained results indicate their potent antioxidant capacity. The antimicrobial activity of investigated compounds on almost all tested bacterial strains was stronger than that of the standard antibiotic erythromycin. The results of docking studies indicate that the minor groove DNA is the possible biological target of 1 and 2. PB - Wiley T2 - Applied Organometallic Chemistry T1 - A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones VL - 37 IS - 1 DO - 10.1002/aoc.6942 ER -
@article{ author = "Kokanov, Sanja B. and Filipović, Nenad R. and Višnjevac, Aleksandar and Nikolić, Milan and Novaković, Irena and Janjić, Goran and Holló, Berta Barta and Ramotowska, Sandra and Nowicka, Paulina and Makowski, Mariusz and Uğuz, Özlem and Koca, Atıf and Todorović, Tamara", year = "2023", abstract = "Interest in Cd complexes has been growing in recent years. Cd complexes are considered a potential solution in the search for novel antibiotics that can fight antimicrobial resistance. In addition, Cd complexes draw attention to material chemistry. The main objective of this work was to prepare the first Cd(II) complexes with anionic forms of pyridine-based thiazolyl hydrazone (THs) ligands HLS2 [(E)-4-(4-methoxyphenyl)-2-(2-[pyridine-2-ylmethylene]hydrazinyl)thiazole] and HLS3 [(E)-2-(2-[pyridine-2-ylmethylene]hydrazinyl)-4-(p-tolyl)thiazole] and perform their structural and spectroscopic characterization, as well as stability in solution and upon heating. Studies related to their biological activities and possible electrochromic applications are also being conducted. Complexes [Cd(HLS2)2] (1) and [Cd(HLS3)2] (2) have been characterized by a single-crystal X-ray diffraction and computational analysis of intermolecular interactions responsible for their solid-state structures was performed. Thermal stability of 1 and 2 in the solid-state was analyzed by TGA/MS, where as their solution stability was determined by the spectrophotometric titration method. Electrochemical and in situ UV–Vis spectroelectrochemical analyses of 1 and 2 were carried out to determine redox mechanisms and the influence of the substituents and electrolytes on their redox responses. The antioxidant capacity of both complexes was tested in antioxidant assays, while their antimicrobial activity was tested against five Gram-positive and four Gram-negative bacteria, as well as against three fungi. The obtained results indicate their potent antioxidant capacity. The antimicrobial activity of investigated compounds on almost all tested bacterial strains was stronger than that of the standard antibiotic erythromycin. The results of docking studies indicate that the minor groove DNA is the possible biological target of 1 and 2.", publisher = "Wiley", journal = "Applied Organometallic Chemistry", title = "A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones", volume = "37", number = "1", doi = "10.1002/aoc.6942" }
Kokanov, S. B., Filipović, N. R., Višnjevac, A., Nikolić, M., Novaković, I., Janjić, G., Holló, B. B., Ramotowska, S., Nowicka, P., Makowski, M., Uğuz, Ö., Koca, A.,& Todorović, T.. (2023). A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones. in Applied Organometallic Chemistry Wiley., 37(1). https://doi.org/10.1002/aoc.6942
Kokanov SB, Filipović NR, Višnjevac A, Nikolić M, Novaković I, Janjić G, Holló BB, Ramotowska S, Nowicka P, Makowski M, Uğuz Ö, Koca A, Todorović T. A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones. in Applied Organometallic Chemistry. 2023;37(1). doi:10.1002/aoc.6942 .
Kokanov, Sanja B., Filipović, Nenad R., Višnjevac, Aleksandar, Nikolić, Milan, Novaković, Irena, Janjić, Goran, Holló, Berta Barta, Ramotowska, Sandra, Nowicka, Paulina, Makowski, Mariusz, Uğuz, Özlem, Koca, Atıf, Todorović, Tamara, "A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones" in Applied Organometallic Chemistry, 37, no. 1 (2023), https://doi.org/10.1002/aoc.6942 . .