Amyloid-like aggregation influenced by lead(II) and cadmium(II) ions in hen egg white ovalbumin
Authorized Users Only
2023
Authors
Mijin, NemanjaMilošević, Jelica

Stevanović, Sanja
Petrović, Predrag

Lolić, Aleksandar

Urbic, Tomaz
Polović, Natalija
Article (Published version)

Metadata
Show full item recordAbstract
The aggregation of proteins into fibrillar, amyloid-like aggregates generally results in an improved, positive effect on various techno-functional properties within food products, such as gelation, emulsification, and foam stabilization. These highly stable structures, characterized by their repetitive, β-sheet rich motifs, may develop as the result of the thermal treatment of protein-rich food products. Heavy metal ions can influence amyloid-like aggregation of food proteins. Lead(II) and cadmium(II) represent some of the most abundant and common environmental water and food pollutants. In this work, the influence of heavy metal ions, lead and cadmium on amyloid-like aggregation of ovalbumin at high temperatures (90 °C) and under acidic conditions (pH 2.0) was investigated. Ovalbumin is used as a general model for how heavy metals can affect amyloid-like aggregation of a food protein. Structural changes were monitored via Thioflavin T and 8-Anilino-1-naphthalenesulfonic acid fluoresce...nce, Fourier-Transform infrared spectroscopy, atomic force microscopy, dynamic light scattering, as well as computational analyses. The obtained results indicate that the added heavy metal ions bind to different sites within ovalbumin prior to thermal treatment. Lead binding sites are closer to the hydrophobic regions of an protein, while cadmium ion binding sites are more exposed. This specific binding of metal ions affects the morphologies of amyloid-like aggregates, resulting in lead-induced branching of amyloid-like fibrils, or cadmium-induced tangling of fibrils into dense amyloid clusters. This additive effect of heavy metal ions is most evident in ovalbumin samples which contain a mixture of both heavy metal ions.
Keywords:
Aggregation / Amyloid / Atomic force microscopy / Fluorescence / Infrared spectroscopy / OvalbuminSource:
Food Hydrocolloids, 2023, 136, 108292-Publisher:
- Elsevier B.V.
Funding / projects:
Collections
Institution/Community
Hemijski fakultet / Faculty of ChemistryTY - JOUR AU - Mijin, Nemanja AU - Milošević, Jelica AU - Stevanović, Sanja AU - Petrović, Predrag AU - Lolić, Aleksandar AU - Urbic, Tomaz AU - Polović, Natalija PY - 2023 UR - http://cherry.chem.bg.ac.rs/handle/123456789/5987 AB - The aggregation of proteins into fibrillar, amyloid-like aggregates generally results in an improved, positive effect on various techno-functional properties within food products, such as gelation, emulsification, and foam stabilization. These highly stable structures, characterized by their repetitive, β-sheet rich motifs, may develop as the result of the thermal treatment of protein-rich food products. Heavy metal ions can influence amyloid-like aggregation of food proteins. Lead(II) and cadmium(II) represent some of the most abundant and common environmental water and food pollutants. In this work, the influence of heavy metal ions, lead and cadmium on amyloid-like aggregation of ovalbumin at high temperatures (90 °C) and under acidic conditions (pH 2.0) was investigated. Ovalbumin is used as a general model for how heavy metals can affect amyloid-like aggregation of a food protein. Structural changes were monitored via Thioflavin T and 8-Anilino-1-naphthalenesulfonic acid fluorescence, Fourier-Transform infrared spectroscopy, atomic force microscopy, dynamic light scattering, as well as computational analyses. The obtained results indicate that the added heavy metal ions bind to different sites within ovalbumin prior to thermal treatment. Lead binding sites are closer to the hydrophobic regions of an protein, while cadmium ion binding sites are more exposed. This specific binding of metal ions affects the morphologies of amyloid-like aggregates, resulting in lead-induced branching of amyloid-like fibrils, or cadmium-induced tangling of fibrils into dense amyloid clusters. This additive effect of heavy metal ions is most evident in ovalbumin samples which contain a mixture of both heavy metal ions. PB - Elsevier B.V. T2 - Food Hydrocolloids T1 - Amyloid-like aggregation influenced by lead(II) and cadmium(II) ions in hen egg white ovalbumin VL - 136 SP - 108292 DO - 10.1016/j.foodhyd.2022.108292 ER -
@article{ author = "Mijin, Nemanja and Milošević, Jelica and Stevanović, Sanja and Petrović, Predrag and Lolić, Aleksandar and Urbic, Tomaz and Polović, Natalija", year = "2023", abstract = "The aggregation of proteins into fibrillar, amyloid-like aggregates generally results in an improved, positive effect on various techno-functional properties within food products, such as gelation, emulsification, and foam stabilization. These highly stable structures, characterized by their repetitive, β-sheet rich motifs, may develop as the result of the thermal treatment of protein-rich food products. Heavy metal ions can influence amyloid-like aggregation of food proteins. Lead(II) and cadmium(II) represent some of the most abundant and common environmental water and food pollutants. In this work, the influence of heavy metal ions, lead and cadmium on amyloid-like aggregation of ovalbumin at high temperatures (90 °C) and under acidic conditions (pH 2.0) was investigated. Ovalbumin is used as a general model for how heavy metals can affect amyloid-like aggregation of a food protein. Structural changes were monitored via Thioflavin T and 8-Anilino-1-naphthalenesulfonic acid fluorescence, Fourier-Transform infrared spectroscopy, atomic force microscopy, dynamic light scattering, as well as computational analyses. The obtained results indicate that the added heavy metal ions bind to different sites within ovalbumin prior to thermal treatment. Lead binding sites are closer to the hydrophobic regions of an protein, while cadmium ion binding sites are more exposed. This specific binding of metal ions affects the morphologies of amyloid-like aggregates, resulting in lead-induced branching of amyloid-like fibrils, or cadmium-induced tangling of fibrils into dense amyloid clusters. This additive effect of heavy metal ions is most evident in ovalbumin samples which contain a mixture of both heavy metal ions.", publisher = "Elsevier B.V.", journal = "Food Hydrocolloids", title = "Amyloid-like aggregation influenced by lead(II) and cadmium(II) ions in hen egg white ovalbumin", volume = "136", pages = "108292", doi = "10.1016/j.foodhyd.2022.108292" }
Mijin, N., Milošević, J., Stevanović, S., Petrović, P., Lolić, A., Urbic, T.,& Polović, N.. (2023). Amyloid-like aggregation influenced by lead(II) and cadmium(II) ions in hen egg white ovalbumin. in Food Hydrocolloids Elsevier B.V.., 136, 108292. https://doi.org/10.1016/j.foodhyd.2022.108292
Mijin N, Milošević J, Stevanović S, Petrović P, Lolić A, Urbic T, Polović N. Amyloid-like aggregation influenced by lead(II) and cadmium(II) ions in hen egg white ovalbumin. in Food Hydrocolloids. 2023;136:108292. doi:10.1016/j.foodhyd.2022.108292 .
Mijin, Nemanja, Milošević, Jelica, Stevanović, Sanja, Petrović, Predrag, Lolić, Aleksandar, Urbic, Tomaz, Polović, Natalija, "Amyloid-like aggregation influenced by lead(II) and cadmium(II) ions in hen egg white ovalbumin" in Food Hydrocolloids, 136 (2023):108292, https://doi.org/10.1016/j.foodhyd.2022.108292 . .