Supplementary data for the article:

Vitorović-Todorović, M. D.; Koukoulitsa, C.; Juranić, I. O.; Mandić, L. M.; Drakulić, B. J. Structural Modifications of 4-Aryl-4-Oxo-2-Aminylbutanamides and Their Acetyl- and Butyrylcholinesterase Inhibitory Activity. Investigation of AChE-Ligand Interactions by Docking Calculations and Molecular Dynamics Simulations. European Journal of Medicinal Chemistry 2014, 81, 158-175. https://doi.org/10.1016/j.ejmech.2014.05.008

Structural modifications of 4-aryl-4-oxo-2-aminylbutyramides and their acetyl- and butyrylcholinesterase inhibitory activity. Investigation of AChE-ligand interactions by docking calculations and molecular dynamics simulations.

Maja D. Vitorović-Todorović ${ }^{\mathrm{a}^{*}}$, Catherine Koukoulitsa ${ }^{\mathrm{b}}$, Ivan O. Juranićc ${ }^{\text {c }}$, Ljuba M. Mandić ${ }^{\text {d }}$, Branko J. Drakulićc
${ }^{a}$ Military Technical Institute, Ratka Resanovića 1, Belgrade, Serbia
${ }^{b}$ Department of Chemistry, University of Athens, Panepistimiopolis-Zografou, 15771, Greece
${ }^{c}$ Department of Chemistry-IChTM, University of Belgrade, Njegoševa 12, Belgrade, Serbia
${ }^{d}$ Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia
Table S1. Data of enzymatic analysis $\left(\mathrm{K}_{\mathrm{i}}\right)$ for the compound 17.

$\mathbf{1}$ (S $\mathbf{S}] \mathbf{x ~ 1 0}$ $\left(\mathbf{m o l}^{\mathbf{- 1}}\right)$	$\mathbf{V}^{-1}(\mathbf{m i n} / \mathbf{\Delta A})$ for $[\mathbf{I}](\boldsymbol{\mu} \mathbf{M})$			
	$\mathbf{0 , 0 0}$	$\mathbf{2 , 0 0}$	$\mathbf{4 , 0 0}$	$\mathbf{5 , 0 0}$
5.05	3.571	5.102	8.064	13.888
5.618	3.676	5.555	8.333	15.625
6.329	3.789	5.814	8.621	16.666
7.246	4.111	6.25	9.615	17.857
8.928	4.386	6.579	10.417	19.23

Table S2. Predicted potency of the compounds based on model described in reference 22, given in the main text.

Compound $\mathbf{N}^{\mathbf{o}}$	Exp. $\mathbf{p}\left(\mathbf{I C}_{\mathbf{5 0}}\right)^{*}$	Calc. $\mathbf{p}\left(\mathbf{I C}_{\mathbf{5 0}}\right)$
$\mathbf{2}$	5.348	5.478
$\mathbf{6}$	5.633	5.634
$\mathbf{1 4}$	5.481	5.433
$\mathbf{1 7}$	5.708	5.555
$\mathbf{1 8}$	5.688	5.503
$\mathbf{2 1}$	5.264	5.088
$\mathbf{2 2}$	5.226	5.329
$\mathbf{2 5}$	5.196	5.197
$\mathbf{2 6}$	5.491	5.544
$\mathbf{3 0}$	5.627	5.759
$\mathbf{3 4}$	4.699	5.224

[^0][^1]
a)
b)

Figure S3. Heatmaps of: a) DRY-DRY block of variables; b) N1-N1 block of variables. Compounds were arranged from the most to the least active one, from the top to the bottom of the Figure.

Figure S4. Variable O-TIP 473 (10.0-10.4 Å), on the example of the most active derivative 18.
Table S5. Experimental vs. calculated $\mathrm{p}\left(\mathrm{IC}_{50}\right)$ values obtained with 3LV from PLS model described in the main text. In the last column, association of variable O-TIP 473 with compounds is shown.

Compound $\mathbf{N o}^{-}$	Exp. $\mathbf{p}\left(\mathbf{I C}_{\mathbf{5 0}}\right)$	Calc. $\mathbf{p}\left(\mathbf{I C}_{\mathbf{5 0}}\right)$	O-TIP 473 Variable *
$\mathbf{1 a}$	5.460	5.203	-
$\mathbf{2 a}$	5.085	5.031	+
$\mathbf{4 a}$	5.313	5.372	+
$\mathbf{5 a}$	5.810	5.716	+
$\mathbf{7 a}$	5.249	5.365	+
$\mathbf{8 a}$	5.198	5.199	+
$\mathbf{2}$	5.348	5.451	+
$\mathbf{4}$	4.553	4.589	+
$\mathbf{6}$	5.633	5.561	+
$\mathbf{9}$	4.638	4.657	-
$\mathbf{1 0}$	4.602	4.646	-

11	4.398	4.401	-
12	4.398	4.400	-
14	5.482	5.506	+
17	5.708	5.794	+
18	5.688	5.660	+
19	5.131	5.302	+
20	5.143	5.218	+
21	5.264	5.185	+
22	5.226	5.126	+
25	5.196	5.204	+
26	5.491	5.401	+
30	5.627	5.619	+
32	4.921	5.019	+
34	4.699	4.634	-

* (+) - Variable has a value different from $0 .(-)-$ Variable has a value 0 .

Table S6. Statistics of PCA model

Component	SSX	SSX $_{\text {acc }}$	VarX	VarX $_{\text {acc }}$
$\mathbf{1}$	24.47	24.47	21.04	21.04
$\mathbf{2}$	16.33	40.8	14.15	35.19
$\mathbf{3}$	9.80	50.60	8.05	43.24
$\mathbf{4}$	7.75	58.35	6.42	49.66
$\mathbf{5}$	5.33	63.68	4.05	53.71

Abbreviations: SSX - percentage of the X sum of the squares; VarX - percentage of the X variance. The 'acc' states cumulative value.

Table S7. RMSD of the atomic positions between docked poses of R and S enantiomers, for the energetically best ranked (E), and the most populated (P) pose of compounds $\mathbf{6}, 17$ and 18 .

Compound $\mathbf{N}^{\mathbf{o}}$	H atoms included	RMSD (£) heavy atoms only
$\mathbf{6}(\mathbf{E}, \mathbf{P})$	1.811	1.810
$\mathbf{1 7}(\mathbf{E})$	2.350	1.480
$\mathbf{1 7}(\mathbf{P})$	2.077	2.077
$\mathbf{1 8}(\mathbf{E})$	1.874	1.220
$\mathbf{1 8}(\mathbf{P})$	2.312	1.440

e) ${ }^{1} \mathrm{H}$ NMR spectrum of compound 16

h) ${ }^{13} \mathrm{C}$ NMR spectrum of compound 24

Figure S7. NMR spectra of representative compounds.

[^0]: * Recalculated from M concentrations.

[^1]: * Corresponding author: mvitod@chem.bg.ac.rs

