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Abstract 

A series of new benzothiazole-based carbamates and amides were synthesized and their 

antiproliferative activity was determined. Derivatives with profound activity were identified 

and further investigated for their possible mechanism of action. It was found that these 

compounds induce specific apoptosis, G2/M cell cycle arrest and decrease ROS level in 

MCF-7 human breast cancer cell line. Moreover, submicromolar antiproliferative activity of 

examined carbamates against NT2/D1 testicular embryonal carcinoma was shown. The most 

potent derivatives strongly inhibited NT2/D1 cell migration and invasiveness. 

  

Keywords: benzothiazoles, antiproliferative, MCF-7, NT2/D1, anoikis 

 

1. Introduction 

Cancer is a complex and lethal disease, responsible for more than 8 million deaths p.a. 

according to the World Health Organization report.1 One of the main features of tumor cells is 

their rapid proliferation, and respective diversity.2 Therefore, the discovery of new drugs that 
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would prevent the cell proliferation and induce apoptosis, stop cancer cell mobility and 

metastasis, is a long standing task of researchers in the field.  

Benzothiazoles3,4 are prominent class of compounds that exert various pharmacological 

activities, such as antimicrobial,5 topoisomerase inhibitory activity,6 anti-HIV,7 

multifunctional anti-Alzheimer’s disease activity,8 anti-inflammatory activity,9 

immunosuppresive (1, Frentizole),10 anticonvulsive and neuroprotective (2, Riluzole).11 

Members of benzothiazole chemotype are also potent anti-infectives – specifically possessing 

antimalarial12,13,14 and antileishmanial activity15,16 (compounds 3 and 4, Figure 1). 

Benzothiazoles were investigated on several instances for their anti-cancer activity.17-

2617,18,19,20,21,22,23,24,25,26 They were tested against selected number of cell lines, e.g., human 

cervical cancer, liver cancer, NSCL, prostate cancer, and human breast cancer exhibiting good 

to excellent antiproliferative activity with low toxicity. Former clinical candidate, Phortress 

(6), lysylamide prodrug of C(2) and C(6) substituted benzothiazole 5F203 (5), Figure 1) 

generates DNA adducts in sensitive cancer cell lines, including MCF-7 breast cancer cell 

line.17 

S

N N
H

F3CO

H

2   (Riluzole)
anticonvulsive
neuroprotective11 

S

N N

O

N

O

H H

 1     (Frentizole)
immunosuppresive10

S

N
N

F

H

R 5:   R= H        5F203
6:   R= Lisyl   Phortress
antitumor activity17

N

NH

Cl

S

N N O

3   
antimalarial12

S

N S

O

F

4
antileismanial 15

 

Figure 1. Sample structures of C(2) substituted benzothiazoles and their physiological 
properties.10,11,12,15,17 

In addition, the research on mechanism of action of individual benzothiazoles was the subject 

of few reports involving the induction of apoptosis by C(2)-substituted benzothiazolyl 

derivatives 7-10 (Figure 2).21,24,27,28   
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Figure 2. Benzothiazole chemotypes that induce apoptosis - compounds 7 and 8: HepG2;21,27 

compounds 9 and 10: MCF-7.24,28  

The above examples clearly indicate that substitution pattern at C(6) plays an 

important role in antiproliferative/anticancer activity of aminobenzothiazoles. We have 

chosen to introduce the thioalkyl substituent at C(6) in order to investigate the influence the 

electron-donor substituent (S) and respective electron-withdrawal (SO) and (SO2) 

counterparts and explore the space around C(6) sulfur by changing the alkyl substituents 

while keeping the carbamate moiety at C(2) nitrogen. For comparison, we also prepared 

respective C(6) oxygen analogue, as well as few amides. 

Therefore, we report the synthesis, activity and investigation on modes of action of 

new benzothiazole chemotype against breast cancer cell lines MCF-7 and testicular 

embryonal carcinoma NT2/D1. Furthermore, the newly synthesized benzothiazole-based 

carbamates were evaluated against NT2/D1 cells in terms of antimigratory activity. To the 

best of our knowledge, only a limited number of benzothiazole-based apoptosis inducers in 

MCF-7 human breast cancer cell line (compounds 9 and 10, Figure 2) have been reported. 

Their proapoptotic activity was confirmed either by ELISA detection of mono- and 

oligonucleosomes enrichment after treatment,28 or caspase-9 activity.24 Moreover, there is no 

report of benzothiazole-based compounds with antiproliferative and antimigratory potential 

against NT2/D1 testicular teratocarcinoma cell line.  

2. Chemistry  

A series of novel benzothiazole carbamates and amides were synthesized starting with 

commercially available 1-chloro-4-nitrobenzene which was converted to 4-(alkylthio)anilines 

(13 – 16) by one-pot transformation in a reaction with the appropriate alkyl thiols and KOH in 

PEG-600 (Scheme 1).29 Aminobenzothiazole moiety was obtained in reaction of 4-substituted 

anilines with NH4SCN using bromine in acetic acid according to modified procedure for 
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synthesis of aminobenzothiazole core.30 After submitting aminobenzothiazoles to further 

derivatization with different alkyl chloroformates, the target carbamate derivatives (24 – 26 

and 28 – 37) were obtained in 19 – 62% yield.  

24: X = S, R1= Et, R2= Et, 40% from 12

25: X = S, R1= n-Pr, R2= Et, 21% from 13

26: X = O, R1= Et, R2= n-Pr,25%  from 17

27:  X = SO2, R1= Et, R2= Et, 55%  

28: X = S, R1= n-Pr, R2= n-Pr, 47%

29: X = S, R1= n-Bu, R2= Et, 19% from 14

30: X = S, R1= n-Bu, R2= n-Pr, 29%

31: X = S, R1= n-Pr, R2= n-Bu, 28% from 13

32: X = S, R1= Et, R2= n-Pr, 27% from 12

33: X = S, R1= Pentyl, R2= Et, 21%

34: X = S, R1= Pentyl, R2= n-Pr, 40%

35: X = S, R1= i-Bu, R2= Et, 23% 

36: X = S, R1= i-Bu, R2= n-Pr, 62%

37: X = S, R1= n-Bu, R2= n-Bu,32%

38: X = SO, R1= Et, R2= Et, 28% 

39: X = SO, R1= n-Pr, R2= n-Pr, 26%

40: X = SO2, R1= n-Pr, R2= n-Pr,48%
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19: X = S, R1= n-Pr, 82%
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23:  X = O, R1= Et, crude 
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12: X = S, R1= Et as HCl salt, comercial

13: X = S, R1= n-Pr , 63%

14: X = S, R1= n-Bu, 49%

15: X = S, R1= i-Bu, 19%

16: X = S,  R1= n-Pentyl, 31%

17: X = O, R1= Et, comercial

41: R1= n-Pr, R2= n-Pr, 21%

42: R1= n-Bu, R2= n-Pr, 28%

43: R1= n-Bu, R2= OCH3, 45%

44: R1= n-Pr, R2=CH2OCH3, 30% 

45: R1= n-Bu, R2= CH2OCH3, 32%

46: R1= n-Pr, R2= OCH3, 23%

h)f)

e)

g)

11 12 - 17 18 - 23

24 - 4041 - 46

Reagents and conditions: a) KOH, R1SH, PEG-600, 100 oC; b) NH4SCN, Br2, CH3COOH, H2O, r.t. to 75 oC; c) ClCO2R2, Et3N, 

benzene, 80 oC; d) alkanoyl chloride, CH2Cl2/benzene, 0oC; e) MCPBA (1 eq), CH2Cl2,r.t; f) MCPBA (4 eq), CH2Cl2, r.t. g) H2O2 (1.2 eq), 

CH3CN, CH3OH, K2CO3, 0
oC to r.t; h) H2O2 (4 eq), CH3CN, CH3OH, K2CO3, 0

oC to r.t.  

Scheme 1. Synthesis of aminobenzothiazole derivatives.  

Oxidation of sulfide 24 was achieved with one or four equivalents of MCPBA31 at 

room temperature in CH2Cl2 to obtain sulfoxy and sulfonyl derivatives 27 and 38, 

respectively. To investigate the influence of antioxidant properties of our 

aminobenzothiazoles on ROS production, and further impact on antiproliferative activity 

against MCF-7 cancer cell line, we have also synthesized 39 and 40, sulfoxy and sulfonyl 

analogues of carbamate 28. For this transformation, H2O2 was used32 as MCPBA afforded 

only complex reaction mixture. The synthesis of benzothiazole-based amide derivatives (41 – 

46) was performed under mild reaction conditions starting from amines 19 and 20 and 

synthesized alkanoyl or alkoxyalkanoyl chlorides.  

 

3. Results 

3.1. Biological evaluation 

3.1.1. In vitro antiproliferative screening and cytotoxicity evaluation 

Seventeen selected compounds (24 – 38, 41 and 44) were submitted to NCI-60 Cell Screen 

through the Developmental Therapeutics Program (DTP) in National Cancer Institute (NCI). 
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Selected compounds were initially tested at a single dose (10µM) against the full NCI 60-cell 

panel (data not shown), following the accepted DTP protocol.33 Seven benzothiazole 

carbamates (24 – 26, 28 – 30 and 33) satisfied pre-determined inhibition threshold criteria in a 

minimum number of cell lines and were evaluated against the 60-cell panel at five 

concentrations level. Table 1 reveals mean GI50 (µM) values (MID) for selected compounds 

tested against full 60-cell panel after 48 h treatment obtained using SRB assay (full data are 

given in Supplementary material). 

Table 1. Mean GI50 (µM) values (MID) for selected compounds obtained after 48 h treatment  

against a panel of 60 cell lines in vitro a 

Compound 24 25 26 28 29 30 33 
MID b 19.9 2.13 81.2 2.14 0.74 0.58 0.83 

a Five dose assay was performed against 60 cancer cell lines treated with selected compounds for 48 hours using 
SRB procedure  
bMID = Mean GI50 values for each compound against full 60-cell panel 

 

The most potent compound was 30 with GI50 values in submicromolar range against 

the majority cell lines of 60-cell panel, followed by compounds 29 and 33. Considering 

investigated ethyl carbamates (24, 25, 29 and 33), lengthening of the alkyl group linked to S-

C(6) attached to benzothiazole moiety led to enhanced antiproliferative activity according to 

MIDs (submicromolar MID GI50 values for butyl and pentyl derivatives 29 and 33 vs. MID 

GI50> 2 µM for ethyl and propyl derivatives 24 and 25). Compound 26, containing O-C(6) 

substituent instead of S-C(6), with the highest GI50 value (>80 µM), clearly emphasized the 

importance of S-C(6) for the antiproliferative activity. Cytotoxic/antiproliferative activities of 

synthesized benzothiazole derivatives were further evaluated against four tumor cell lines 

(estrogen receptor positive breast adenocarcinoma MCF-7, myelogenous leukemia K562, 

melanoma A375, testicular embryonal carcinoma NT2/D1) and human lung fibroblast MRC-5 

cell line derived from normal lung tissue. Standard MTT assay was applied after 48h cell 

exposure to the tested compounds (25, 26, 28 – 30, 32, 34 – 37, 39 – 46) (Table 2 and 

Supplementary material I) 

 

Table 2. IC50 values calculated for selected compounds (25, 28 – 30, 36, 39 – 41, 44, 45).c 

Compound Structure 
MCF-7  

(IC 50, µM) 

A375  

(IC 50, µM) 
K562 

 (IC50, µM) 
NT2/D1 

(IC 50, µM) 

MRC-5  

(IC 50, µM) 

25 
 

61.4±4.2 85.0±5.6 > 100 >1 - 

28 
 

24.2±3.1 > 100 > 100 0.2±0.03 > 300 

S
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29 
 

> 100 91.6±6.0 > 100 >1 - 

30 
 

> 100 45.2±3.4 > 100 0.1±0.01 >300 

36 
 

> 100 > 100 7.7±2.0 >1 - 

39 S

N

S
N

O
OO

H  
> 100 - - - - 

40 S

N

S
N

O
OO

H
O  

> 100 - - - - 

41 
 

30.5±2.5 77.5±4.5 53.2±4.0 >1 > 300 

44 
 

95.5±5.5 > 100 66.3±4.2 >1 - 

45 
 

92.5±5.0 > 100 44.2±3.3 >1 - 

Doxorubicin  0.4  - 2 - - 

Cisplatin  - - - 1.11±0.17 - 
cIC50 values were calculated after 48 h treatment of selected cell lines with five concentrations of investigated 
compounds using MTT assay. The measurements were performed in triplicate.  
 

Obtained results indicated a high sensitivity of NT2/D1 cell line towards carbamates 

28 and 30 with IC50 values 0.2 and 0.1 µM, respectively. The activity of both inhibitors 

against NT2/D1 was investigated in detail, vide infra.  

The MTT assay indicated that other tumor cell lines (K562, A375 and MCF-7) mostly 

keep their metabolic activity after 48 h exposure to examined compounds. Notable IC50 values 

(24.2 µM and 30.5 µM) were estimated for carbamate 28 and amide 41 (R1 = R2 = n-Pr) 

against MCF-7 cells, while compound 41 was also active against A375 and K562 cells. 

Additional methylene group in alkylthio chain induced a complete lack of activity for 

compound 42 (Supplementary material). The most active compound against K562 cell line 

was iso-butyl derivative 36 with IC50 = 7.7 µM.  

High IC50 values (>300 µM) for compounds 28, 30, and 41 against control MRC-5 

line, indicated good selectivity of benzothiazole derivatives for cancer cell lines and very low 

toxicity against normal human cell line in vitro. 

Our newly synthesized aminobenzothiazole derivatives with the observed 

antiproliferative activity were investigated for their mechanism of action. We have chosen 

two cancer cell lines, moderately sensitive MCF-7 and very sensitive NT2/D1 cells. First we 

tested the molecular mechanisms underlying the inhibitory effect of carbamate 28 and amide 

41 on the proliferation and viability of MCF-7 cells.  
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3.1.2. Treatment of MCF-7 cells with benzothiazole derivatives induced G2/M arrest and 

increased expression of cyclin B1  

To investigate possible antiproliferative effects we selected IC50 concentration for 

compounds 28 and 41 and analyze their effects on cell cycle distribution of MCF-7 at two 

time points (24 and 48 h treatments). Applied equipotent concentrations were 25 µM for 28 

and 30 µM for 41. Treatment with these compounds exhibited time-dependent effects on 

MCF-7 cell cycle progression. Both examined compounds induced the accumulation of cells 

in G2/M phase after 24 h treatment. It is followed by gradual increase in apoptotic cell 

population (sub-G1 phase) with reduction of cells in both G0/G1 and S cell cycle phases 

compared to untreated control cells (Figure 3). Extended 48 h treatment of MCF-7 cells 

(Figure 4) resulted in further increase in cell death (sub-G1 phase cells around 50%).  

 

  

Figure 3. Cell cycle distribution after 24 h treatment (M1 – sub G1, M2 – G0/G1, M3 – S, 

M4 – G2/M). 

                   

  

Figure 4. Cell cycle distribution after 48 h treatment (M1 – sub G1, M2 – G0/G1, M3 – S, 

M4 – G2/M) 

To gain insight into events preceding G2/M arrest of MCF-7 cells, we measured the 

expression of cyclin B1, one of the regulatory proteins that control mitosis, during 24 h 

treatment with the already applied concentrations of tested compounds. Flow cytometric 
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analysis revealed that treatment of MCF-7 cells induced the increase in cyclin B1 expression 

(Figure 5), what is in accordance with accumulation of cells in G2/M phase after 24 h. 

                         

  

Figure 5. Level of intracellular cyclin B1 after 24 h treatment of MCF-7 cells with 
antiproliferatives 28 and 41 

3.1.3. Translocation of cell membrane phosphatidyl serine 

The observed apoptosis-inducing effect of investigated compounds was also confirmed by 

bivariate Annexin V-FITC/PI flow cytometry. We examined the kinetics of induced apoptosis 

at IC50 concentrations of compounds 28 and 41. In line with previous results, 24 h and 48 h 

treatments induced significant increase in programmed cell death (Figure 6). Apoptosis 

effects were time dependent with the highest number of early apoptotic MCF-7 cells detected 

48 h after the treatment (61% and 49% for compounds 28 and 41, respectively). In addition, 

low level of late apoptotic/necrotic cells was observed.  
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Figure 6. Effects of compounds 28 and 41 on apoptosis in terms of Annexin-V and PI 

staining of MCF-7 cells for 24 h (A) and 48 h (B).  

3.1.4. Benzothiazole derivatives induced mitochondrial events related to apoptosis in 
MCF-7 cells 

Data obtained by measuring the translocation of the cell membrane phosphatidyl serine 

revealed the increased population of early apoptotic MCF-7 cells upon treatment with 

compounds 28 and 41 (Figure 6). Consequently, we examined the observed pro-apoptotic 

effects of tested compounds in relation to mitochondrial injury. We performed FACS Rh123 

fluorochrome incorporation assay.34 The mitochondrial membrane potential (∆Ψm) changed 

slightly after 24 h of MCF-7 cell treatment with both investigated compounds (Figure 7A). In 

contrast, a significant loss of ∆Ψm in more than 80% MCF-7 cells,  was observed upon 48 h 

treatment (Figure 7B) indicating that apoptosis induced by 28 and 41 involved mitochondrial 

dysregulation. 

  
Figure 7. Mitochondrial membrane potential (MMP) in MCF-7 cells after 24 h (A) and 48 h 

(B) treatment with 28 and 41 compared to control cells’ MMP (violet) 
 

The relative levels of pro-apoptotic proteins such as Bax and anti-apoptotic proteins 

such as Bcl-2 determines whether cell death will occur following an apoptotic stimulus. The 

Bax/Bcl-2 complex regulates the mitochondrial membrane permeability.35 The overexpression 

of the pro-apoptotic Bax induces the loss of the mitochondrial membrane potential that 
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initiates the progression of apoptosis. Considering dysregulation of mitochondrial membrane, 

we evaluated Bax/Bcl-2 ratio during the treatment of MCF-7 cells with compounds 28 and 41 

at single equipotent concentration 24 and 48 h after treatments. FACS analysis performed to 

quantify the pattern of Bax and Bcl-2 expressions revealed that incubation with tested 

compounds for 24 h resulted in increased protein expression of the mitochondrial pro-

apoptotic protein Bax (Figure 8). On the other hand, exposure to these agents for 24 h did not 

significantly modify the expression of Bcl-2. This resulted in slightly increased Bax/Bcl-2 

ratio (Figure 8). After 48 h of treatment, protein expression of Bax increased further, while 

expression of Bcl-2 decreased, which resulted in significant increase of Bax/Bcl-2 ratio and 

the observed apoptosis (Figure 8). Derivative 28 exhibited more than 5-fold increase of 

Bax/Bcl-2 ratio compared to untreated cells after 48 h treatment.  

 

 

  

Figure 8. Bax/Bcl-2 ratio (fold increase compared to control cells) after 24 and 48 h treatment 
of MCF-7 cells with tested benzothiazoles at IC50 concentration. *P < 0.05, **P < 0.01, ***P 
< 0.001 

To identify the putative involvements of p53 and p73 proteins in pro-apoptotic effect of 

benzothiazole derivatives, protein expressions were measured in treated cell line. The 

expression of p53 and p73 proteins was measured in MCF-7 cells treated with IC50 

concentrations of 28 and 41 using flow cytometry at two time points. Twenty four hour 

treatment induced significant p53 protein accumulation and a persistently increased level was 

observed up to 48 h (Figure 9A), along with reduction of p73 expression level at both time 

points (Figure 9B), implicated that apoptosis induced by examined compounds might be 

mediated by p53-dependent pathway. 
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Figure 9. p53 (A) and p73 (B) protein level (fold change compared to control) in MCF-7 cells 
after benzothiazole treatment.*P < 0.05, **P < 0.01, ***P < 0.001 

 
 

3.1.5. Benzothiazole derivatives sharply reduced reactive oxygen species (ROS) 

production in MCF-7 cell line 

Affecting ROS production in tumor cells is one of therapeutic approaches for treating 

cancer. Based on the structures of investigated inhibitors with R1S-C(6) possibly rendering 

antioxidant properties, we conducted experiments to check whether our compounds scavenge 

ROS and would that activity be related to their pro-apoptotic effect. The ROS level was 

measured in MCF-7 cells treated with compounds 28 (c = 25 µM) and 41 (c = 30 µM) for 24 

and 48 h by flow cytometry using fluorescent dye DCFH-DA. The obtained data 

demonstrated that both compounds significantly decrease the ROS level in MCF-7 cells after 

24 h treatment (Figure 10) with a persistent reduction of ROS production after 48 h treatment. 

In addition, we have tested the effects of sulfoxide and sulfonyl analogues of 28, 39 and 40, 

respectively, after 24 h treatment (c = 25 µM). Results demonstrated in Figure 11 show that 

these derivatives with higher oxidation state of sulfur exhibited reduction of ROS 

accumulation to a lesser extent, which can be ascribed to their reduced antioxidative ability. 

Partial ROS suppressing activity of sulfonyl derivative 40 indicated the possibility of thiazole 

sulfur’s antioxidative properties. Along with this observation, the RO-C(6) derivative 26 was 

checked for its possible antioxidative action (c = 25 µM). This compound, containing only 

thiazole sulfur, induced 15% decrease in ROS accumulation compared to control cells after 24 

h treatment (Figure 11), thus retaining the potential antioxidative properties. Taken together, 

these results showed that ROS affecting activity of examined benzothiazole derivatives is 

strongly enhanced with RS-C(6) substituent, however, the thiazole sulfur also contributes to 

overall antioxidative action.  
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Figure 10. Intercellular ROS level after treatment with 28 and 41 compared to control cells 
***P < 0.001 

 

 

  

Figure 11. Intracellular ROS level in MCF-7 cells after 24 h treatment with compound 28, its 
oxidized analogues 39 and 40, and compound 26 at 25 µM compared to control cells. 

In addition, we examined effects on apoptosis after 24 h treatment for sulfoxide and 

sulfonyl analogues of 28, the compounds 39 and 40, respectively, at 25 µM (Figure 12). In 

spite of the lack of activity shown in vitro in MTT assay (Table 2) derivatives 39 and 40 

exhibited significant pro-apoptotic activity against MCF-7 cells. The results indicate that 

oxidation of sulfur at RS-C(6) did not affect apoptosis-inducing properties of parent 

compound 28.  
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Figure 12.  Effects of compounds 39 and 40 on apoptosis in terms of Annexin-V and PI 
staining of MCF-7 cells upon 24 h treatment 

3.1.6. Treatment of NT2/D1 cells with compounds 28 and 30 induced cell detachment 

and delayed apoptosis 

In order to reveal mechanism of extreme sensitivity of NT2/D1 cells to the compounds 

28 and 30 we examined their apoptotic effect using bivariate Annexin V-FITC/PI flow 

cytometry. After 24 h treatment with compounds 28 and 30 at IC50 concentration, NT2/D1 

apoptotic response was not observed. Interestingly, we observed massive detachment of 

NT2/D1 cells seen in cell cultures 24 h after the treatment with both compounds at 

concentration of 1 µM (Figure 13). 

 

  

Figure 13.  Detachment of NT2/D1 cells upon 24 h of treatment with 1 µM of compounds 28 
and 30 

To further investigate the observed massive cell detachment, progression of apoptosis 

was analyzed separately in both harvested floating and adherent NT2/D1 cells after 24 h and 

48 h treatment with 1 µM of compounds 28 and 30. Time-course of apoptotic events was 

similar for both analyzed compounds (Figure 14). In the sub-population of adherent cells, less 

than 10% of cells underwent apoptosis in both examined time points (24 h and 48 h 

treatments). In contrast, floating cells showed higher apoptotic response. At 24 h time point 

~20% of cells were in early apoptosis and ~50% in late apoptosis stage. After 48 h treatment, 
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this ratio was increased in favor of late apoptotic cells (~10% early apoptotic cells and ~80% 

in late apoptosis) showing that both compounds affect cell adhesion and lead to the rapid 

induction of the cell death. 

  

Figure 14.  Effects of compounds 28 and 30 on apoptosis of (A) adherent and (B) floating 
NT2/D1 cells upon 24 h and 48 h of treatment 

Detached cells that underwent apoptosis in later stages, point to the anoikis as a mechanism of 

NT2/D1 cell death. To analyze this outcome in more details we preformed trypan blue 

exclusion test of cell viability36 and count the number of adherent and floating cells (Table 3). 

Experiments carried out with the concentration of 1 µM of both, 28 and 30 compounds, 

revealed that a high number of floating cells (42% and 79%, respectively) was present in the 

cultures after 24 h of treatment (Table 3); 29% of them were alive after treatment with 

compound 28 and even more (61%) after treatment with compound 30. As exposure 

proceeded, number of floating cell increased to 69% in 28 treated cultures and up to 91% in 

cells treated with compound 30 but number of live floating cells markedly decreased (15% in 

28 treatments and 32% in 30 treatments). Table 3. NT2/D1 cell survival and adhesion after 

treatment with compounds 28 and 30 counted with trypan blue exclusion assay. 

a number of cells ×104; 
b % floating over total cell number;  
c % live cells over the floating cell number. Data are presented as the mean ± SD of three independent 
experiments. 

  

These results suggest that tested carbamates 28 and 30 induced NT2/D1 cell growth inhibition 

accompanied with detachment from the surface and delayed apoptosis. All these 

characteristics present hallmarks of anoikis.37 Anoikis triggered by loss of cell anchorage is of 

  28 30 

Time 
(h) 

Control 
adherenta Adherenta Floatinga Floating 

%b 

Live 
floating 
%c 

Adherenta Floatinga Floating 
%b 

Live 
floating 
%c 

24 52±9 32±10 23±2 42 29 11±3 42±7 79 61 
48 113±13 24±6 54±4 69 15 4±2 41±5 91 32 
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great relevance for many physiological processes while anchorage-independency and 

resistance to anoikis led to various pathological conditions including metastasis.38  

Further examination of antiproliferative effects on NT2/D1 cells showed that 24 h treatment 

with 1 µM of compounds 28 and 30 caused accumulation of the cells in G2/M phase 

(Supplementary material I). Apoptosis induced in NT2/D1 cells involved mitochondrial 

membrane potential reduction and both tested benzothiazole derivatives, 28 and 30, 

significantly decreased ROS level after 48 h treatment (Supplementary material I). These 

results indicated that carbamate 28 induced very similar pattern of cellular response in both 

NT2/D1 and MCF-7 cell lines.  

 

3.1.7. Benzothiazole derivatives significantly inhibited formation and growth of NT2/D1 

colonies 

Next, we checked the effect of examined compounds and the subsequent loss of 

anchorage on malignant capacity of NT2/D1 cells. We investigated the effect of tested 

compounds on colony formation and growth, as well as on migration and invasion capacity of 

NT2/D1 cells. 

Colony assays were performed in order to evaluate the effect of carbamates 28 and 30 

on NT2/D1 cells colony formation and on colony growth. In colony forming assay cells were 

seeded and immediately treated with compounds at IC50 concentrations, and colonies formed 

after seven days were stained and counted. As shown in Figure 15A the treatment with both 

compounds led to significant reduction in the number of colonies, as compared with control. 

The inhibitory effect of 30 (~70% inhibition) on colony formation of NT2/D1 cells was 

higher than that of 28 (~40% inhibition).  

In colony growing assay, colonies containing ~10 cells were treated with compounds 

28 and 30 and counted when colonies in control untreated NT2/D1 comprised ~50 cells. 

Decrease of 45% and 25% in the number of large colonies were detected following the 

treatments with compounds 28 and 30, respectively (Figure 15 B). These results showed that 

compounds 28 and 30 have inhibitory potential on the formation and growth of NT2/D1 cell 

colonies. 
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Figure 15. Effects of compounds 28 and 30 on NT2/D1 cells colony formation (A) and 
colony growth. (B)  Representative colonies are shown. The relative number of colonies was 
calculated as a percentage of the number of colonies of untreated NT2/D1 cells that was set as 
100%. Results were presented as the means ± SEM of two independent experiments 

3.1.8. Cell migration 

In order to evaluate the impact of compounds 28 and 30 on the migration potential of 

NT2/D1 cells, we used scratch wound healing assay. NT2/D1 cells were grown to near 

confluency, wounded and subsequently treated with IC50 concentrations of 28 and 30 or 

vehicle control (DMSO). Images of wounds were captured immediately after scratches (0 h) 

and 20 h post-wounding to measure the number of cells invading the denuding zone. As 

shown in Figure 16, treatments with compounds 28 and 30 decreased migratory potential of 

NT2/D1 cells to approximately 60% and 40%, respectively compared to control. 

  

Figure 16. Effects of compounds 28 and 30 on the migratory potential of NT2/D1 cells. The 
wound healing assay of NT2/D1 cells treated with vehicle control (NT2/D1), compound 28 
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and compound 30. Representative images of the wounds were captured at the indicated time 
points. The number of treated cells migrated in the denuded area were presented as the 
percentage of the number of untreated NT2/D1 cells that was set as 100%. The error bars 
indicate the standard error of the mean. Experiments were performed in triplicate (*P < 0.01). 
Scale bar: 100 mm 

3.1.9. Invasion potential of NT2/D1 cells after treatment with benzothiazole derivatives 

To investigate whether cell detachment induced by compounds 28 and 30 is associated 

with metastatic activity of NT2/D1 cells, we examined the invasive potential of NT2/D1 cells 

after treatment with tested compounds. NT2/D1 cells were treated with sub-apoptotic IC50 

concentrations of 28 and 30 in complete medium for 24 h and seeded to Matrigel coated 

transwell inserts in serum-free medium. FBS was used as chemoattractant. Cells were allowed 

to invade for 48 h. As shown in Figure 17, both compounds suppressed NT2/D1 cell invasion 

reaching 70% inhibition for 28 and even 95% inhibition for compound 30.  

Altogether, results obtained by wound healing assay and cell invasion test 

demonstrated profound anti-metastatic potential of carbamates 28 and 30 against NT2/D1 

cells. 

  

Figure 17. Transwell invasion assay on NT2/D1 cells treated with compounds 28 and 30. 
NT2/D1 cells were treated with compounds 28 and 30 in complete culture medium for 24 h 
and seeded in serum-free medium to transwell inserts (8 mm pore size) coated with Matrigel. 
After 48 h, untreated and treated invading cells were fixed, stained, and counted 
microscopically. Representative images of transwell invasion assays were presented. The 
relative change in cells invasion was calculated as a percentage of the invasion of untreated 
NT2 cells that was set as 100%. Cells were counted from five fields and averages were 
calculated. Results were presented as the means ± SEM of two independent experiments.  

3.1.10. In vivo NCI acute toxicity determination  
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After NCI in vitro screening on 60 cell lines panel, compounds 28 and 30 were 

selected for determination of maximum tolerated dose in a nontumored animal toxicity assay. 

After i.p. administrated single injection to a female athymic nude mice, examined compounds 

proved to be nontoxic at the given doses during observation period of 14 days (Supplementary 

material). Compound 28 showed to be nontoxic at 200 mg/kg dose and compound 30 at 400 

mg/kg dose. 

4. Discussion 

Our newly synthesized benzothiazole derivatives showed antiproliferative activity in 

vitro against a broad spectrum of human cancer cell lines. Moreover, lack of toxicity of 

selected compounds in vitro against MRC-5 cell line as well as in vivo, encouraged us to 

investigate the possible mechanistic pathways underlying observed bioactivity. We selected 

MCF-7 human breast cell line and NT2/D1 human testicular embryonal carcinoma cells for 

further experiments. Parallel investigation was performed for carbamate 28 and amide 41 as 

the most potent compounds against selected MCF-7 cell line and for carbamates 28 and 30 

against NT2/D1 cells. 

The results obtained on MCF-7 cells demonstrate that compounds 28 and 41 caused 

the growth inhibition of tumor cells and an apparent block in G2/M cell cycle phase (24 h), 

subsequently resulting in massive cell accumulation in sub-G1 phase after 48 h treatment. 

Cell cycle progression is mediated by phosphorylation of different substrates by cyclin 

dependent kinases (Cdks) at a specific cell cycle phase. Cyclin B1, one of proteins that 

regulate cell division is mostly cytoplasmic, and it enters nucleus at the end of G2 phase.39 In 

our study the level of cyclin B1 increased after 24 h and the percentage of cells arrested in 

G2/M phase was elevated after treatment with two selected compounds, as detected by flow 

cytometric analysis.    

Cell growth inhibition by early apoptosis is one of the preferred modes of anticancer 

action of therapeutics, mostly because of inducing fewer side effects compared to other types 

of cell death.40 Presented results indicate that examined benzothiazole derivatives were able to 

induce time-dependent apoptosis in the human breast cancer MCF-7 cells. Moreover, insight 

into the signaling mechanisms that underlie benzothiazole-induced apoptosis was provided. 

Mitochondrial dysfunction could be an early event preceding apoptosis.41 It is characterized 

by an increase in mitochondrial membrane permeability and loss of membrane potential. 

Indeed, our data revealed that more than 80% of MCF-7 cells upon 48 h treatment with 

compounds 28 and 41 exhibited dissipation of mitochondrial membrane potential (Figure 7) 

and an increase of Bax/Bcl-2 ratio (Figure 8), confirming the completion of the apoptotic 

program upon G2/M arrest.   
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It is known, but not yet fully understood, that in a response to a cellular stress p53 

molecule plays role in activating the expression and function of numerous pro-apoptotic 

genes, typically followed by intrinsic cell death pathway.42 Persistently increased level of p53 

up to 48 h in MCF-7 cells treated with examined benzothiazole derivatives may indicate that 

apoptosis induced by those compounds is p53 dependent. Unexpectedly, the expression level 

of p73, another member of p53 family of transcription factors, decreased compared to control 

cells at both measuring time points. We speculate that significant down-regulation of p73 

along with remarkable induction of p53 could be explained assuming that some of caspases 

cleaved the p73 protein during apoptosis.43 Since MCF-7 cells lack caspase-3,44 the cleavage 

of p73 could be mediated by other executioner caspases, -6 or -7. 

Production of reactive oxygen species is increased in cancer cells and those species 

participate in tumor initiation, progression and maintenance.45 Decreasing intracellular ROS 

levels is known method for inhibiting cancer growth, by modulating many physiological 

processes that are relevant to cancer growth and ROS are required for those processes.46 In 

addition, suppressing ROS production could prevent the ROS from spreading and protect 

adjacent healthy cells from oxidative DNA damage, consequently diminishing toxic side 

effects of cancer therapy.47 We found that tested compounds significantly decrease the 

production of ROS in MCF-7 cells after treatment. A comparative study of 28 and analogues 

39 and 40 indicated that RS-C(6) substituent is important for suppressing ROS accumulation 

in MCF-7 cells, in addition to thiazole sulfur due to their overall antioxidative contribution.  

Considering the obtained results, it is worth to notice that, in spite of functional group 

difference between the two test compounds used in this study, carbamate 28 and amide 41, 

our findings indicated that both follow the same mechanism of action against MCF-7 cancer 

cell line.  

The results obtained on NT2/D1 cell line indicated that carbamates 28 and 30 induced 

cell growth inhibition and triggered cell detachment from the substrate accompanied with 

apoptosis. These sequence of events is characteristic of a particular type of apoptosis, 

designated as anoikis.48,49 The occurrence of anoikis is supported by the high number of 

floating live cells followed by detected apoptosis.37,49 

 Cell detachment is probably caused by the aberrant regulation of cell adhesion and 

further investigation is needed to elucidate exact mechanism of carbamates’ action used in 

this study. Although some differences in the degree of cellular response to compounds 28 and 

30 have been detected, it is likely that both compounds engaged the same molecular 

mechanisms in NT2/D1 cells. Different cellular responses of MCF-7 and NT2/D1 to 

carbamate 28 probably reflects diverse interactions of 28 in different cellular context. It 

suggests that cell detachment and delayed apoptosis may be limited to testicular cancer cells 
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and does not represent common mechanism in other cancer cells. Nevertheless, tested 

compounds induced very similar response in terms of cell cycle arrest, mitochondrial 

involvement in apoptosis and ROS affection in both MCF-7 and NT2/D1 cell lines.  

Anoikis is potential target for new anticancer therapies approaches as a signal for 

cancer cell death induced by cell detachment.50 The only consideration about these 

approaches is potential metastatic spread following cell detachment.37 Induction of NT2/D1 

cell detachment and observed restriction in cell viability and growth, together with a reduction 

in cell invasiveness and ability to migrate, marked compounds 28 and 30 as promising new 

compounds that need further validation as potential effective therapeutic agents. Since 

NT2/D1 cells showed exceptional sensitivity to the tested carbamates and that compounds 28 

and 30 had no cytotoxic effect on control cells and in non-tumored mice, it would be 

interesting to analyze the potential synergistic effect of these compounds and cisplatin in 

future study. Cisplatin-based chemotherapy is the most efficient treatment of testicular germ 

cell tumors51 but its clinical application may be limited due to its toxicity and resistance.52 To 

minimize these effects, there is constant search for new combinatorial therapies that could 

reduce common side effects of platinum based chemotherapeutic drugs and its effective 

dose.53 Further studies would evaluate the potential use of compound 28 and/or 30 in 

combinatorial treatment of testicular carcinoma. 

In a last few years testicular carcinoma NT2/D1 cells are being considered as cancer 

stem cells (CSC), a subpopulation of cancer cells responsible for tumor growth, progression 

and its metastatic spreading.54,55 CSCs are considered responsible for tumor resistance to 

chemo- and radiotherapies and consequent failure of conventional therapeutic approaches.54 

Therefore, targeting unique features of CSCs is another ultimate goal of cancer treatment 

research. These approaches include pluripotency restriction, induction of differentiation and 

sensitization to particular compound.56 To elucidate whether tested carbamates 28 and 30 may 

be candidates for these strategies further investigations are needed. 

 

5. Conclusion 

Synthesized benzothiazole derivatives showed good potency against proliferation of various 

cancer cell lines in vitro. In this study it was demonstrated that synthesized propyl [6-

(propylsulfanyl)-1,3-benzothiazol-2-yl]carbamate 28 and N-[6-(propylsulfanyl)-1,3-

benzothiazol-2-yl]pentanamide 41, selected for mechanistic evaluation of activity against 

MCF-7, exhibit their antiproliferative activity by blocking cell cycle in G2/M phase and by 

promoting apoptosis. Apoptotic cell death was further determined with mitochondrial 

membrane potential reduction and increased Bax/Bcl-2 ratio after treatment of MCF-7 cells 

with selected benzothiazoles, along with induction of p53. While the most of strategies for 
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cancer therapies based on affecting ROS and apoptosis consider induction of ROS 

production,57 compounds tested in this study showed significant reduction of ROS 

accumulation. In addition, two most potent derivatives, carbamate 28 and propyl [6-

(butylsulfanyl)-1,3-benzothiazol-2-yl]carbamate 30 exhibited significant antiproliferative 

activity against NT2/D1 cell line. The massive detachment of the NT2/D1 cells after 

treatment with compounds 28 and 30 accompanied with apoptosis and inhibitory activity 

against migration and invasiveness of these cells were shown. Moreover, derivatives 28, 30 

and 41 were nontoxic against normal MRC-5 cells in vitro, and the most potent compounds 

28 and 30 showed no toxicity in non-tumored animal toxicity assay. Further studies are 

needed to clarify the precise targets for antiproliferative and antimigratory activity of 

aminobenzothiazole derivatives on NT2/D1 cells, as well as new aspects for possible 

improvement of current therapies. 

 

6. Experimental section 

6.1. General information 

Melting points were determined on a Boetius PMHK apparatus and were not corrected. IR 

spectra were taken on a Thermo-Scientific Nicolet 6700 FT-IR diamond crystal. NMR: 1H 

and 13C NMR spectra were recorded on a Bruker Ultrashield Advance III spectrometer (at 

500 and 125 MHz, respectively) in the indicated solvent using TMS as the internal standard. 

Chemical shifts are expressed in ppm (δ) values, and coupling constants (J), in Hz. ESI MS 

spectra of the synthesized compounds were recorded on an Agilent Technologies 6210 time-

of-flight LC/MS instrument in positive ion mode using CH3CN/H2O = 1/1 with 0.2% 

HCOOH as the carrying solvent solution. The samples were dissolved in pure methanol 

(HPLC grade). The selected values were as follows: capillary voltage = 4 kV; gas temperature 

350 °C; drying gas = 12 L min−1; nebulizer pressure = 45 psig; and fragmentator voltage = 70 

V. The flash chromatography was performed on Biotage SP1 system equipped with UV 

detector and FLASH 12+, FLASH 25+ or FLASH 40+ columns charged with KP-SIL (40 – 

63 µm, pore diameter 60 Å), KP-C18-HS (40 – 63 µm, pore diameter 90 Å) or KP-NH (40 – 

63 µm, pore diameter 100 Å) as an adsorbent. Compounds were analyzed for purity (HPLC) 

using Agilent 1200 HPLC system equipped with a Quat Pump (G1311B), an injector 

(G1329B) 1260 ALS, TCC 1260 ( G1316A) and a detector 1260 DAD VL+ (G1315C). All 

tested compounds are fully characterized and the purities were > 95% as determined by HPLC 

(Supplementary material). HPLC analysis was performed in two diverse systems for each 

compound. Compounds were dissolved in methanol, final concentrations were ~ 1mg/mL. 

Applied HPLC methods were as follows. 
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Method A. Zorbax Eclipse Plus C18 4.6 × 150mm, 1.8µ, S.N. USWKY01594 was used as 

the stationary phase. Eluent was made of the following solvents: 0.2% formic acid in water 

(A) and acetonitrile (B). The analysis were performed at 280 nm for compounds 23 – 26 and 

29 – 31; at 290 nm for compounds 28, 33, 34 and 41 and at 320 nm for compounds 42 – 46. 

Flow rate was 0.5 mL/min.  

Method B. Zorbax Eclipse Plus C18 4.6 × 150mm, 1.8µ, S.N. USWKY01594 was used as 

the stationary phase. Eluent was made of the following solvents: 0.2% formic acid in water 

(A) and methanol (B). The analysis were performed at 280 nm for compounds 24 – 26 and 29 

– 31; at 290 nm for compounds 28, 34 and 41 and at 320 nm for compounds 32 and 42 – 46. 

Flow rate was 0.5 mL/min.  

Method C. Zorbax Eclipse Plus C18 2.1 × 100mm, 1.8µ, S.N. USUXU04444 was used as the 

stationary phase. Eluent was made of the following solvents: water (A) and methanol (B). The 

analysis were performed at 320 nm for compound 32. Flow rate was 0.5 mL/min.  

Method D. Poroshell 120 EC-C18, 4.6 × 50mm, 2.7µ, S.N. USCFU07797 was used as the 

stationary phase. Eluent was made of the following solvents: 0.2% formic acid in water (A) 

and acetonitrile (B). The analysis were performed at 290 nm for compound 33 and 280 nm for 

compounds 27 and 38. Flow rate was 1 mL/min. 

Method E. Zorbax Eclipse Plus C18 4.6 × 150mm, 1.8µ, S.N. USWKY01594 was used as 

the stationary phase. Eluent was made of the following solvents: water (A) and acetonitrile 

(B). The analysis were performed at 280 nm for compound 37 and at 290 nm for compounds 

35 and 36. Flow rate was 0.5 mL/min.  

Method F. Zorbax Eclipse Plus C18 4.6 × 150mm, 1.8µ, S.N. USWKY01594 was used as the 

stationary phase. Eluent was made of the following solvents: water (A) and methanol (B). The 

analysis were performed at 290 nm for compounds 35 and 36 and at 280 nm for compound 

37. Flow rate was 0.5 mL/min. 

Method G. Zorbax Eclipse Plus C18 2.1 × 100mm, 1.8µ, S.N. USUXU04444 was used as the 

stationary phase. Eluent was made of the following solvents: 0.2% formic acid in water (A) 

and methanol (B). The analysis were performed at 295 nm for compounds 39 and 40. Flow 

rate was 0.5 mL/min. 

Method H. Zorbax Eclipse Plus C18 2.1 × 100mm, 1.8µ, S.N. USUXU04444 was used as the 

stationary phase. Eluent was made of the following solvents: 0.2% formic acid in water (A) 

and acetonitrile (B). The analysis were performed at 295 nm for compound 39. Flow rate was 

0.5 mL/min. 

Method I. Poroshell 120 EC-C18, 4.6 × 50mm, 2.7µ, S.N. USCFU07797 was used as the 

stationary phase. Eluent was made of the following solvents: 0.2% formic acid in water (A) 
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and methanol (B). The analysis were performed at 280 nm for compounds 27 and 38 and 295 

nm for compound 40. Flow rate was 0.5 mL/min. 

6.2. Chemical synthesis  

6.2.1. General procedure C for synthesis of (6-Substituted-1,3-benzo[d]thiazol-2-

yl)carbamates 24 – 26, 29, 31 and 32  

A solution of bromine (1.25 eq) in glacial acetic acid was added to a stirring mixture of an 

appropriate 4-substituted aniline (1 eq), ammonium thiocyanate (4 eq), acetic acid and water 

at 10 °C. The reaction mixture was stirred at room temperature for 18 h, and then at 80 °C for 

3 h. After cooling to room temperature, the reaction mixture was poured onto water and 

Na2CO3 was added in order to adjust pH to 5-6. The reaction mixture was extracted with ethyl 

acetate, layers were separated and organic layer was washed with brine. Organic layer was 

dried over anhydrous Na2SO4, filtered and evaporated to dryness. The crude product 6-

substituted aminobenzothiazole was used in the next reaction step. An appropriate alkyl 

chloroformate (1.1 eq) and triethylamine (1.8 eq) were added to a solution of 6-substituted 

aminobenzothiazole in benzene. The reaction mixture was stirred at 80°C for 3 h, and then 

poured onto cold water and extracted with ethyl acetate. Combined organic layers were dried 

over anhydrous Na2SO4, filtered and evaporated to dryness. The crude product was further 

purified in a manner provided for each compound. 

6.2.1.1. Ethyl [6-(ethylsulfanyl)-1,3-benzothiazol-2-yl]carbamate (24). Yield 40%. M.p. = 

(162 – 165) °C. IR (ATR): 3432w, 3400w, 3162m, 3124m, 3079m, 3045m, 2973s, 2924s, 

2776m, 1720s, 1599s, 1557s,  1444s, 1364m, 1290s, 1250s, 1119m, 1070m, 1048m, 1021w,   

820m, 757m cm−1. 1H NMR (500 MHz, (CD3)2SO, δ): 7.96 (d, J = 1.6 Hz, 1H), 7.61 (d, J = 

8.4 Hz, 1H), 7.36 (dd, J1 = 8.4 Hz, J2 = 1.8 Hz, 1H), 4.24 (q,  J = 7.1 Hz, 2H), 2.98 (q, J = 7.3 

Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H), 1.22 (t, J = 7.3 Hz, 3H). 13C NMR (125 MHz, (CD3)2SO, δ): 

159.53, 153.88, 147.84; 132.61, 130.26, 127.58, 121.85, 120.52, 61.94, 27.48, 14.30. (+)ESI-

HRMS: m/z 283.05655 corresponds to molecular formula C12H14N2O2S2H
+ (error, -1.38 

ppm). HPLC purity, method A: tR = 8.695, area 99.27%. Method B: tR = 9.906, area 96.29%. 

6.2.1.2. Ethyl [6-(propylsulfanyl)-1,3-benzothiazol-2-yl]carbamate (25). Yield 21%. M.p. 

= (158 – 162) °C. IR (ATR): 3135w, 3076w, 2957m, 2909m, 2869m, 2782m, 1725s, 1597s, 

1561s, 1453s, 1428m, 1270s, 1243s, 1110m, 1069m, 1045m, 1022m, 816m, 759m, 707m 

cm−1. 1H NMR (500 MHz, (CD3)2SO, δ): 12.00 (bs, 1H), 7.96 (d, J = 1.4 Hz, 1H), 7.60 (d, J = 

8.5 Hz, 1 H), 7.36 (dd, J1 = 8.5 Hz, J2 = 1.8 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 2.94 (t, J = 7.1 

Hz, 2H), 1.61 – 1.54 (m, 2H), 1.27 (t, J = 7.1 Hz, 3H), 0.96 (t, J = 7.3 Hz, 3H). 13C NMR (50 

MHz, (CD3)2SO, δ): 159.85, 154.23, 148.00, 132.89, 130.76, 127.84, 122.09, 120.78, 62.20, 

35.57, 22.22, 14.52, 13.34. (+)ESI-HRMS: m/z 297.07191 corresponds to molecular formula 
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C13H16N2O2S2H
+ (error, -2.30 ppm). HPLC purity, method A: tR = 9.194, area 99.67%. 

Method B: tR = 10.528, area 99.44%. 

6.2.1.3. Propyl (6-ethoxy-1,3-benzothiazol-2-yl)carbamate (26). Yield 25%. M.p. = (168 – 

169) °C. IR (ATR): 3161w, 3081m, 2977s, 2933m, 2802m, 1718s, 1612s, 1562s, 1463s, 

1391m, 1272s, 1242s, 1212s, 1113m, 1057s, 971w, 941m, 792m, 760m cm−1. 1H NMR (500 

MHz, (CD3)2SO, δ): 11.83 (bs, 1H), 7.56 (d, J = 8.9 Hz, 1H), 7.51 (d, J = 2.5 Hz, 1H), 6.97 

(dd,  J1 = 8.7 Hz, J2 = 2.5 Hz, 1H), 4.14 (t, J = 6.6 Hz, 1H), 4.04 (q, J = 7.0 Hz, 2H), 1.69 – 

1.62 (m,  2H), 1.33 (t, J = 6.9 Hz, 3H), 0.93 (t, J = 7.5 Hz, 3H).  13C NMR (125 MHz, 

(CD3)2SO, δ): 157.46, 155.12, 143.28, 132.76, 120.81, 114.97, 105.47, 67.16, 63.62, 21.73, 

14.70, 10.13. (+)ESI-HRMS: m/z 281.09541 corresponds to molecular formula 

C13H16N2O3SH+ (error, -0.10 ppm). HPLC purity, method A: tR = 8.520, area 99.48%. Method 

B: tR = 9.741, area 96.69%. 

6.2.1.4. Ethyl [6-(butylsulfanyl)-1,3-benzothiazol-2-yl]carbamate (29). Yield 19%. M.p. = 

(138 – 140) °C. IR (ATR): 3139m, 3072s, 2983s, 2954s, 2931s, 2865s, 2794s, 1724s, 1603s, 

1570s, 1452s, 1366m, 1340m, 1313m, 1293s, 1274s, 1250s, 1113m, 1070m, 1048m, 1022m, 

816s, 781m, 760s, 708m cm−1. 1H NMR (500 MHz, CDCl3, δ): 11.90 (bs, 1H), 7.86 (d, J = 

8.6 Hz, 1H), 7.78 (d, J = 1.7 Hz, 1H), 7.40 (dd, J1 = 8.4 Hz, J2 = 1.8 Hz, 1H), 4.41 (q, J = 7.3 

Hz, 2H), 2.96 (t, J = 7.5 Hz, 2H), 1.67 – 1.61 (m, 2H), 1.50 – 1.41 (m, 5H), 0.93 (t, J = 7.3 

Hz, 3H). 13C NMR (125 MHz, (CD3)2SO, δ): 161.39, 153.81, 147.21, 132.40, 131.82, 128.33, 

122.21, 120.81, 62.88, 34.73, 31.28, 21.89, 14.46, 13.63. (+)ESI-HRMS: m/z 311.08801 

corresponds to molecular formula C14H18N2O2S2H
+ (error, -0.76 ppm).HPLC purity, method 

A: tR = 9.757, area 97.08%. Method B: tR = 11.594, area 96.14%. 

6.2.1.5. Butyl [6-(propylsulfanyl)-1,3-benzothiazol-2-yl]carbamate (31). Yield 28%. M.p. 

= (74 – 80) °C. IR (ATR): 3170m, 3070m, 2961s, 2931s, 2872m, 1721s, 1602s, 1562s, 

1456m, 1293s, 1248s, 1074w, 814w, 762w cm−1. 1H NMR (500 MHz, (CD3)2SO, δ): 7.94 (d, 

J = 1.6 Hz, 1H), 7.60 (d, J = 8.3 Hz, 1H), 7.35 (dd, J1 = 8.5 Hz, J2 = 1.8 Hz, 1H), 4.19 (t, J = 

6.6 Hz, 2H), 2.94 (t, J = 7.1 Hz, 2H), 1.65 – 1.53 (m, 4H), 1.41 – 1.35 (m, 2H), 0.95 (t, J = 7.3 

Hz, 3H), 0.91 (t, J = 7.5 Hz, 3H). 13C NMR (125 MHz, (CD3)2SO, δ): 159.60, 154.04, 147.74, 

132.63, 130.53, 127.60, 121.84, 120.51, 65.59, 35.43, 30.34, 22.02, 18.50, 13.55, 13.11. 

(+)ESI-HRMS: m/z 325.10391 corresponds to molecular formula C15H20N2O2S2H
+ (error, 

+0.05 ppm). HPLC purity, method A: tR = 10.346, area 99.78%. Method B: tR = 11.916, area 

99.36%. 

6.2.1.6. Propyl [6-(ethylsulfanyl)-1,3-benzothiazol-2-yl]carbamate (32). Yield 27%.  M.p. 

= (137-138) °C. IR (ATR): 3062m, 2968s, 2922s, 1717s, 1600m, 1562m, 1445m, 1396w, 

1287m, 1248m, 1072w, 1044w, 759w cm−1. 1H NMR (500 MHz, (CD3)2SO, δ): 12.01 (bs, 

1H), 7.95 (d, J = 1.8 Hz, 1H), 7.61 (d, J = 8.5 Hz, 1H), 7.36 (dd, J1 = 8.5 Hz, J2 = 1.8 Hz, 
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1H), 4.15 (t, J = 6.8 Hz, 1H), 2.98 (q, J = 7.3 Hz, 2H), 1.70 – 1.63 (m, 2H), 1.22 (t,  J = 7.3 

Hz, 3H), 0.93 (t, J = 7.5 Hz, 3H). 13C NMR (125 MHz, (CD3)2SO, δ): 160.13, 154.54, 148.24, 

133.06, 130.67, 128.02, 122.27, 120.93, 67.73, 27.93, 22.12, 14.74, 10.56. (+)ESI-HRMS: 

m/z 297.07243 corresponds to molecular formula C13H16N2O2S2H
+ (error, -0.57 ppm). HPLC 

purity, method B: tR = 12.996, area 95.61%. Method C: tR = 14.178, area 95.09%. 

6.2.2. General procedure D for synthesis of compounds 28, 30 and 33 – 37  

An appropriate alkyl chloroformate (1.1 eq) and triethylamine (1.8 eq) were added to a 

solution of corresponding 6-(alkylsulfanyl)-1,3-benzothiazol-2-amine (1 eq) in benzene. After 

3 h of stirring at 80 °C the reaction mixture was poured onto water and extracted with ethyl 

acetate. Combined organic layers were dried over anhydrous Na2SO4, filtered and evaporated 

to dryness. The crude product was subjected to silica gel column chromatography and silica 

gel flash chromatography, Biotage SP1, using hexane/ethyl acetate as eluent to afford the final 

product. 

6.2.2.1. Propyl [6-(propylsulfanyl)-1,3-benzothiazol-2-yl]carbamate (28). Yield 47%. M.p. 

= (138 – 140) °C. IR (ATR): 3167m, 3062m, 2960s, 2932m, 2876m, 1724s, 1598s, 1562s, 

1449m, 1447s, 1308m, 1273s, 1244s, 1047m, 962w, 888w, 805m, 782m, 755m cm−1. 1H 

NMR (500 MHz, (CD3)2SO, δ):  12.01 (bs, 1H), 7.96 (d, J = 1.7 Hz, 1H), 7.60 (d, J = 8.4 Hz, 

1H), 7.36 (dd, J1 = 8.4 Hz, J2 = 1.9 Hz, 1H), 4.15 (t, J = 6.7 Hz, 2H), 2.94 (t, J = 7.2 Hz, 2H), 

1.70  ̶  1.63 (m, 2H), 1.61-1.54 (m, 2H), 0.98-0.92 (m, 6H). 13C NMR (125 MHz, (CD3)2SO, 

δ): 159.54, 154.00, 147.74, 132.61, 130.49, 127.58, 121.82, 120.49, 67.28, 35.38, 21.99, 

21.68, 13.09, 10.10. (+)ESI-HRMS: m/z 311.08810 corresponds to molecular formula 

C14H18N2O2S2H
+ (error, -0.47 ppm). HPLC purity, method A: tR = 11.532, area 98.23%. 

Method B: tR = 13.159, area 98.53%. 

6.2.2.2. Propyl [6-(butylsulfanyl)-1,3-benzothiazol-2-yl]carbamate (30). Yield 29%. M.p. 

= 130 °C. IR (ATR): 3169m, 3068m, 2960s, 2926s, 2785m, 1725s, 1601m, 1564m, 1451m, 

1288m, 1247m, 1070w, 818w, 752w cm−1. 1H NMR (500 MHz, CDCl3, δ): 11.35 (bs, 1H), 

7.82 (d, J = 8.5 Hz, 1H), 7.78 (d, J = 1.4 Hz, 1H), 7.40 (dd, J1 = 8.5 Hz, J2 = 1.8 Hz, 1H), 4.30 

(t, J = 6.8 Hz, 2H), 2.96 (t, J = 7.4 Hz, 2H), 1.84  ̶  1.77 (m, 2H), 1.67 – 1.61 (m, 2H), 1.50 – 

1.42 (m, 2H), 0.99 (t, J = 7.5 Hz, 3H), 0.92 (t, J = 7.3 Hz, 3H). 13C NMR (125 MHz, CDCl3, 

δ): 161.06, 153.80, 147.35, 132.54, 131.83, 128.42, 122.29, 120.83, 68.53, 34.77, 31.31, 

22.14, 21.91, 13.65, 10.32. (+)ESI-HRMS: m/z 325.10408 corresponds to molecular formula 

C15H20N2O2S2H
+ (error, +0.56 ppm).  HPLC purity, method A: tR = 10.371, area 96.76%. 

Method B: tR = 12.388, area 98.58%. 

6.2.2.3. Ethyl [6-(pentylsulfanyl)-1,3-benzothiazol-2-yl]carbamate (33). Yield 21%. M.p. = 

(137 – 138) °C. IR (ATR): 3175m, 3152m, 3123m, 3058m, 2956s, 2924s, 2854s, 1724s, 

1597s, 1550s, 1460s, 1370m, 1296s, 1241s, 1069m, 818m, 766m cm−1. 1H NMR (500 MHz, 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 26

CDCl3, δ): 11.60 (bs, 1H), 7.84 (d, J = 8.5 Hz, 1H), 7.78 (d, J = 1.6 Hz, 1H), 7.40 (dd, , J1 = 

8.5 Hz, J2 = 1.6 Hz, 1H), 4.40 (q, J = 7.1 Hz, 2H), 2.95 (t, J = 7.5 Hz, 2H), 1.69 – 1.63 (m, 

2H), 1.45 – 1.39 (m, 5H), 1.37 – 1.29 (m, 2H), 0.89 (t, J = 7.2 Hz, 3H). 13C NMR (125 MHz, 

CDCl3, δ): 161.19, 153.75, 147.25, 132.47, 131.85, 128.37, 122.22, 120.82, 62.90, 35.01, 

30.93, 28.88, 22.23, 14.46, 13.94. (+)ESI-HRMS: m/z 325.10435 corresponds to molecular 

formula C15H20N2O2S2H
+ (error, +1.40 ppm). HPLC purity, method A: tR =12.206, area 

98.52%. Method D: tR = 4.563, area 98.28%. 

6.2.2.4. Propyl [6-(pentylsulfanyl)-1,3-benzothiazol-2-yl]carbamate (34). Yield 40%. M.p. 

= (116 – 118) °C. IR (ATR): 3170m, 3127m, 3062m, 2956s, 2923s, 2853s, 2784m, 1725s, 

1601s, 1562s, 1451m, 1393m, 1309m, 1289s, 1248s, 1069m, 821m, 752m cm−1. 1H NMR 

(500 MHz, CDCl3, δ): 11.72 (bs, 1H), 7.84 (d, J = 8.6 Hz, 1H), 7.78 (d, J = 1.5 Hz, 1H), 7.40 

(dd, J1 = 8.4 Hz, J2 = 1.8 Hz, 1H), 4.30 (t, J = 6.8 Hz, 2H), 2.94 (t, J = 7.4 Hz, 2H), 1.84 – 

1.77 (m, 2H), 1.69 – 1.63 (m, 2H), 1.45 – 1.39 (m, 2H), 1.36 – 1.29 (m, 2H), 0.99 (t, J = 7.5 

Hz, 3H), 0.89 (t, J = 7.2 Hz, 3H). 13C NMR (125 MHz, CDCl3, δ):  161.31, 153.88, 147.26, 

132.43, 131.80, 128.37, 122.23, 120.77, 68.50, 35.03, 30.92, 28.87, 22.22, 22.11, 13.93, 

10.30. (+)ESI-HRMS: m/z 339.12006 corresponds to molecular formula C16H22N2O2S2H
+ 

(error, +1.51 ppm). HPLC purity, method A: tR = 13.079, area 96.82%. Method B: tR = 

14.812, area 95.51%. 

6.2.2.5. Ethyl {6-[(2-methylpropyl)sulfanyl]-1,3-benzothiazol-2-yl}carbamate (35). Yield 

23%. M.p. = (159 – 160) °C. IR (ATR): 3139m, 3081m, 2968s, 2914s, 2866m, 1722s, 1599s, 

1560s, 1458m, 1275s, 1246s, 1111m, 1070m, 1049m, 1019m, 820m, 789m, 762m cm−1. 1H 

NMR (500 MHz, CDCl3, δ): 11.47 (bs, 1H), 7.84 (d, J = 8.5 Hz, 1H), 7.77 (d, J = 1.6 Hz, 

1H), 7.40 (dd, J1 = 8.5 Hz, J2 = 1.8 Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 2.85 (d, J = 6.9 Hz, 

2H), 1.88 (sep, J = 6.7 Hz, 1H), 1.42 (t, J = 7.1 Hz, 3H), 1.05 (d, J = 6.6 Hz, 6H). 13C NMR 

(125 MHz, CDCl3, δ): 161.25, 153.77, 147.18, 132.44, 132.27, 128.30, 122.13, 62.88, 44.10, 

28.32, 22.01, 14.46. (+)ESI-HRMS: m/z 311.08796 corresponds to molecular formula 

C14H18N2O2S2H
+ (error, -0.92 ppm). HPLC purity, method E: tR = 12.189, area 99.00%. 

Method B: tR = 13.873, area 99.59%. 

6.2.2.6. Propyl {6-[(2-methylpropyl)sulfanyl]-1,3-benzothiazol-2-yl}carbamate (36). Yield 

62%. M.p. = (139 – 141) °C. IR (ATR): 3172m, 3131m, 3074m, 2919s, 2852m, 1722s, 

1599m, 1565m, 1456m, 1282s, 1245s, 1074m, 818m, 760m cm−1. 1H NMR (500 MHz, 

CDCl3, δ): 11.60 – 11.58 (m, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.77 (d, J = 1.6 Hz, 1H), 7.40 (dd, 

J1 = 8.4 Hz, J2 = 1.8 Hz, 1H), 4.30 (t, J = 6.8 Hz, 2H), 2.85 (d, J = 6.8 Hz, 2H), 1.91 – 1.77 

(m, 3H), 1.05 (d, J = 6.6 Hz, 6H), 0.99 (t, J = 7.43 Hz, 3H). 13C NMR (125 MHz, CDCl3, δ): 

161.18, 153.85, 147.23, 132.47, 132.25, 128.33, 122.16, 120.79, 68.49, 44.11, 28.31, 22.00, 

10.30. (+)ESI-HRMS: m/z 325.10387 corresponds to formula C15H20N2O2S2H
+ (error, -0.08 
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ppm). HPLC purity, method E: tR = 12.787, area 98.08%. Method F: tR = 14.618, area 

99.74%. 

6.2.2.7. Butyl [6-(butylsulfanyl)-1,3-benzothiazol-2-yl]carbamate (37). Yield 32%. M.p. = 

(120-121) °C. IR (ATR): 3143m, 3077m, 2953s, 2928s, 2866m, 1727s, 1598s, 1452m, 

1276m, 1246m, 1108w, 1074w, 820m, 782w, 756m, cm−1. 1H NMR (500 MHz, CDCl3, δ): 

11.64 – 11.41 (m, 1H), 7.84 – 7.81 (m, 1H), 7.78 (d, J = 1.5 Hz, 1H), 7.40 (dd, J1 = 8.6 Hz, J2 

= 1.7 Hz, 1H), 4.35 (t, J = 6.7 Hz, 2H), 2.96 (t, J = 7.4 Hz, 2H), 1.79 – 1.73 (m, 2H), 1.67 – 

1.61 (m, 2H), 1.50 – 1. 38 (m, 4H), 0.97 – 0.91 (m, 6H). 13C NMR (125 MHz, CDCl3, δ): 

161.50, 153.95, 147.22, 132.39, 131.77, 128.33, 122.25, 120.76, 66.76, 34.75, 31.28, 30.76, 

21.88, 18.99, 13.66. (+)ESI-HRMS: m/z 339.12048 corresponds to molecular formula 

C16H22N2O2S2H
+ (error, +2.77 ppm). HPLC purity, method E: tR = 12.749, area 95.92%. 

Method F: tR =14.577, area 98.25%. 

6.2.3. General procedure E for synthesis of N-[6-(Propylsulfanyl)-1,3-benzothiazol-2-

yl]alkanamides 41 – 46  

The alkanoyl chlorides were prepared according to known procedures using an appropriate 

commercially available acids and thionyl chloride as starting materials.58 A solution of an 

appropriate alkanoyl chloride (1.3 eq) in benzene was added dropwise into the solution of 

corresponding aminobenzothiazole (1 eq) (19 or 20) in CH2Cl2/benzene (1:1, v/v) at 0 °C. The 

reaction mixture was stirred at the same temperature until consumption of starting 

aminobenzothiazole (TLC control). The reaction was quenched with cold water. The layers 

were separated and the aqueous layer was extracted with CH2Cl2. The combined organic 

layers were dried over anhydrous Na2SO4, filtered and evaporated to dryness. The crude 

product was subjected to a multiple column chromatography to afford desired compound.  

6.2.3.1. N-[6-(propylsulfanyl)-1,3-benzothiazol-2-yl]pentanamide (41). Yield 21%. M.p. = 

113 °C. IR (ATR): 3276m, 3178m, 3128m, 3064m, 2960s, 2930m, 2870m, 1660s, 1594s, 

1538s, 1439m, 1374w, 1345m, 1295m, 1266m, 1192w, 1087w, 815w, 774w cm−1. 1H NMR 

(500 MHz, CDCl3, δ): 10.66 (bs, 1H), 7.81 (d, J = 1.6 Hz, 1H), 7.65 (d, J = 8.5 Hz, 1H), 7.44 

(dd, J1 = 8.5 Hz, J2 = 1.8 Hz, 1H), 2.94 (t, J = 7.3 Hz, 2H), 2.46 (t, J = 7.6 Hz, 2H), 1.73  ̶  

1.66 (m, 4H), 1.37  ̶  1.30 (m, 2H), 1.04 (t, J = 7.4 Hz, 3H), 0.88 (t, J = 7.3 Hz, 3H). 13C NMR 

(125 MHz, CDCl3, δ): 171.64, 158.91, 146.43, 132.89, 132.38, 128.68, 122.46, 120.58, 36.91, 

36.26, 26.97, 22.54, 22.19, 13.64, 13.38. (+)ESI-HRMS: m/z 309.10813 corresponds to 

molecular formula C15H20N2OS2H
+ (error, -2.76 ppm). HPLC purity, method A: tR = 11.671, 

area 97.05%. Method B: tR = 13.245, area 98.01%.  

6.2.3.2. N-[6-(butylsulfanyl)-1,3-benzothiazol-2-yl]pentanamide (42). Yield 28%. M.p. = 

117 °C. IR (ATR): 3144m, 3116m, 3036m, 2958s, 2927s, 2870s, 1694s, 1590s, 1542s, 

1443m, 1380m, 1349m, 1306w, 1269s, 1172m, 1099w, 1052w, 976w, 892w, 810m, 769w 
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cm−1. 1H NMR (500 MHz, CDCl3, δ): 10.15 (bs, 1H), 7.80 (d, J = 1.6 Hz, 1H), 7.65 (d, J = 8.5 

Hz, 1H), 7.43 (dd, J1 = 8.5 Hz, J2 = 1.8 Hz, 1H), 2.98 – 2. 95 (m, 2H), 2.49 – 2. 46 (m, 2H), 

1.74 – 1.68 (m, 2H), 1.67 – 1.61 (m, 2H), 1.50 – 1.34 (m, 4H), 0.94 – 0.89 (m, 6H). 13C NMR 

(125 MHz, CDCl3, δ): 171.61, 158.86, 146.39, 132.87, 132.45, 128.53, 122.31, 120.55, 36.22, 

34.53, 31.21, 26.94, 22.16, 21.86, 13.61, 13.59. (+) ESI-HRMS: m/z 323.12407 corresponds 

to molecular formula C16H22N2OS2H
+ (error, -1.73). HPLC purity, method A: tR = 12.200, 

area 96.72%. Method B: tR =13.409, area 98.18%. 

6.2.3.3. N-[6-(butylsulfanyl)-1,3-benzothiazol-2-yl]-2-methoxyacetamide (43). Yield 45%. 

M.p. = 62 °C. IR (ATR): 3382w, 3207w, 2956m, 2929m, 2871w, 1703m, 1594m, 1537s, 

1448m, 1272m, 1196w, 1119m, 994w, 817w, 745w cm−1. 1H NMR (500 MHz, CDCl3, δ): 

9.86 (bs, 1H), 7.79 – 7.78 (m, 1H), 7.68 (d, J = 8.5 Hz, 1H), 7.43 (dd, J1 = 8.5 Hz, J2 = 1.8 

Hz, 1H), 4.16 (s, 2H), 3.52 (s, 3H), 2.97 – 2.94 (m, 2H), 1.67 – 1.61 (m, 2H), 1.49 – 1.42 (m, 

2H), 0.92 (t, J = 7.3 Hz, 3H). 13C NMR (125 MHz, CDCl3, δ): 168.07, 156.52, 146.85, 

133.03, 132.65, 128.58, 122.18, 121.26, 71.25, 59.57, 34.55, 31.24, 21.89, 13.61. (+) ESI-

HRMS: m/z 311.08743 corresponds to molecular formula C14H18N2O2S2H
+ (error, -2.62 

ppm). HPLC purity, method A: tR = 10.999, area 98.02%. Method B: tR = 12.336, area 

98.37%. 

6.2.3.4. 3-Methoxy-N-[6-(propylsulfanyl)-1,3-benzothiazol-2-yl]propanamide (44). Yield 

30%. M.p. = 111 °C. IR (ATR): 3270w, 3118m, 3038m, 2962s, 2922s, 2811m, 1704m, 1591s, 

1544s, 1447m, 1394m, 1270s, 1174m, 1120m, 1067m, 810m cm−1. 1H NMR (500 MHz, 

CDCl3, δ): 10.26 (bs, 1H), 7.79 (d, J = 1.8 Hz, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.43 (dd, J1 = 

8.5 Hz, J2 = 1.8 Hz, 1H), 3.76 (t, J = 5.5 Hz, 2H),  3.48 (s, 1H), 2.93 (t, J = 7.3 Hz, 2H), 2.77 

(t, J = 5.5 Hz, 2H), 1.71  ̶  1.64 (m, 2H), 1.03 (t, J = 7.3 Hz, 3H).13C NMR (125 MHz, CDCl3, 

δ): 169.86, 157.57, 146.97, 133.08, 132.12, 128.67, 122.39, 121.02, 67.67, 59.20, 36.96, 

36.90, 22.56, 13.37. (+)ESI-HRMS: m/z 311.08741 corresponds to molecular formula 

C14H18N2O2S2H
+ (error, -2.67 ppm). HPLC purity, method A: tR = 10.325, area 98.09%. 

Method B: tR = 11.326, area 99.00%. 

6.2.3.5. N-[6-(butylsulfanyl)-1,3-benzothiazol-2-yl]-3-methoxypropanamide (45). Yield 

32%. M.p. = 99 °C. IR (ATR): 3147s, 3046m, 2953s, 2924s, 2875s, 2814m, 1703s, 1592s, 

1536s, 1451m, 1417m, 1395m, 1332m, 1267s, 1160s, 1116s, 1068m, 988w, 960m, 808m, 

793m, 757m cm−1. 1H NMR (500 MHz, CDCl3, δ): 10.33 (bs, 1H), 7.78 (d, J = 1.6 Hz, 1H), 

7.69 (d, J = 8.5 Hz, 1H), 7.42 (dd, J1 = 8.5 Hz, J2 = 1.8 Hz, 1H), 3.77 – 3.74 (m, 2H), 3.47 (s, 

3H), 2.97 – 2.94 (m, 2H), 2.78 – 2.75 (m, 2H), 1.67 – 1.61 (m, 2H), 1.50 – 1.42 (m, 2H), 0.92 

(t, J = 7.3 Hz, 3H). 13C NMR (125 MHz, CDCl3, δ): 169.88, 157.62, 146.90, 133.07, 132.24, 

128.55, 122.24, 121.00, 67.67, 59.18, 36.90, 34.60, 31.26, 21.89, 13.62. (+) ESI-HRMS: m/z 
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325.10332 corresponds to molecular formula C15H20N2O2S2H
+ (error, -1.77 ppm). HPLC 

purity, method A: tR = 10.636, area 96.78%. Method B: tR = 12.682, area 98.30%.  

6.2.3.6. 2-Methoxy-N-[6-(propylsulfanyl)-1,3-benzothiazol-2-yl]acetamide (46). Yield 

23%. M.p. = 62 °C. IR (ATR): 3170m, 3062m, 2966m, 2938m, 2829w, 1688m, 1590m, 

1534s, 1453m, 1273s, 1197m, 1119m, 992w, 809w, 772w, 744w cm−1. 1H NMR (500 MHz, 

CDCl3, δ): 9.80 (bs, 1H), 7.79 (d, J = 1.4 Hz, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.44 (dd, J1 = 8.5 

Hz, J2 = 1.4 Hz, 1H), 4.16 (s, 2H), 3.52 (s, 3H), 2.93 (t, J = 7.2 Hz, 2H), 1.71 – 1.64 (m, 2H), 

1.03 (t, J = 7.3 Hz, 3H). 13C NMR (125 MHz, CDCl3, δ): 168.01, 156.40, 146.99, 133.09, 

132.48, 128.67, 122.32, 121.32, 71.22, 59.54, 36.90, 22.53, 13.35. (+) ESI-HRMS: m/z 

297.07173 corresponds to molecular formula C13H16N2O2S2H
+ (error, -2.91 ppm). HPLC 

purity, method A: tR = 10.423, area 97.81%. Method B: tR = 11.602, area 98.30%.  

6.2.4. General procedure F for synthesis of compounds 27 and 38 31 

To a stirring solution of 24 (1 eq) in CH2Cl2, MCPBA (1 eq for 38 and 4 eq for 27) was 

added. After stirring (4 h in the dark for compound 38 and 16 h for compound 27) at room 

temperature, 10% aqueous Na2S2O3 solution was added. The layers were separated, organic 

layer was washed with saturated aqueous NaHCO3 solution, dried over anhydrous Na2SO4, 

filtered and evaporated to dryness. The crude product was further purified in a manner 

provided for each compound. 

6.2.4.1. Ethyl [6-(ethanesulfonyl)-1,3-benzothiazol-2-yl]carbamate (27). Yield 55%. M.p. 

= (257 – 259) °C. IR: 3121m, 3072w, 2979m, 2944m, 2775w, 1721s, 1602m, 1556s, 1450m, 

1307s, 1254m, 1150s, 1103w, 1044w, 830w, 786w, 757w, 715w cm−1. 1H NMR (500 MHz, 

(CD3)2SO, δ): 12.37 (bs, 1H), 8.58 (d, J = 0.9 Hz, 1H), 7.89 – 7.85 (m, 2H), 4.28 (q, J = 7.1 

Hz, 2H), 3.31 – 3.28 (m, 2H), 1.30 (t, J = 7.1 Hz, 3H), 1.12 (t, J = 7.5 Hz, 3H). 13C NMR (125 

MHz, CDCl3, (CD3)2SO, δ): 163.77, 153.80, 152.94, 132.42, 132.16, 125.29, 122.37, 120.27, 

62.05, 49.76, 14.12, 7.18. (+)ESI-HRMS: m/z 315.04662 corresponds to molecular formula 

C12H14N2O4S2H
+ (error, -0.48 ppm). HPLC purity, method D: tR =4.187, area 95.46%. 

Method I: tR = 4.662, area 95.51%. 

6.2.4.2. Ethyl [6-(ethanesulfinyl)-1,3-benzothiazol-2-yl]carbamate (38). Yield 28%. M.p. = 

195 °C. IR (ATR): 3359m, 3175m, 3056m, 2924s, 2853s, 1713s, 1658m, 1634m, 1602s, 

1564s, 1448m, 1366m, 1301s, 1276m, 1250s, 1103m, 1072m, 1044m, 891w, 827w, 794m, 

761m, 708w cm−1. 1H NMR (500 MHz, CDCl3, δ): 10.94 (bs, 1H), 8.13 (d, J = 1.4 Hz, 1H), 

8.02 (d, J = 8.5 Hz, 1H), 7.59 (dd, J1= 8.5 Hz, J2 = 1.6 Hz, 1H), 4.43 (q, J = 7.1 Hz, 2H), 3.00 

– 2.93 (m, 1H), 2.88 – 2.81 (m, 1H), 1.43 (t, J = 7.2 Hz, 3H), 1.23 (t, J = 7.3 Hz, 3H). 13C 

NMR (125 MHz, CDCl3, δ): 163.04, 153.58, 150.90, 138.24, 132.77, 121.84, 121.18, 117.98, 

63.26, 50.76, 14.47, 6.14. (+)ESI-HRMS: m/z 299.05162 corresponds to molecular formula 
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C12H14N2O3S2H
+ (error, -0.81 ppm). HPLC purity, method D: tR = 4.087, area 95.52%. 

Method I: tR = 4.668, area 95.14%. 

6.2.5. General procedure G for synthesis of compounds 39 and 4032  

To a solution of 28 (1 eq) in methanol, acetonitrile (1.5 eq) and K2CO3 (0.7 eq) were added. 

The mixture is cooled to 0 °C with vigorous stirring and hydrogen-peroxide (1.2 eq for 

compound 39 and 4 eq for compound 40) was added dropwise as a solution in methanol over 

30 minutes. The reaction was maintained at 0 °C 4 h (for compound 39) or at room 

temperature overnight (for compound 40). After consumption of starting material, the mixture 

is poured onto brine and extracted with CH2Cl2. Organic layers were dried over anhydrous 

Na2SO4 and evaporated to dryness. The crude product was further purified in a manner 

provided for each compound. 

6.2.5.1. Propyl [6-(propane-1-sulfinyl)-1,3-benzothiazol-2-yl]carbamate (39). Yield 26%. 

IR (ATR): 3165m, 3127m, 3057m, 2964s, 2933s, 2876s, 2780m, 1724s, 1601s, 1557s, 1449s, 

1404m, 1292s, 1274s, 1249s, 1066s, 1032m, 966m, 890m, 829m, 784m, 754m, 708w cm−1. 
1H NMR (500 MHz, CD3OD, δ): 12.21 (bs, N-H), 8.28 – 8.26 (m, 1H), 7.84 – 7.83 (m, 1H), 

7.66 – 7.64 (m, 1H), 4.17 (t, J = 6.6 Hz, 2H), 2.95 – 2.77 (m, 2H), 1.70 – 1.47 (m, 4H), 0.97 – 

0.92 (m, 6H). 13C NMR (125 MHz, CD3OD, δ): 161.76, 154.08, 151.19, 138.54, 132.39, 

121.86, 120.73, 118.13, 67.47, 57.75, 21.63, 15.32, 12.91, 10.09. (+)ESI-HRMS: m/z 

327.08293 correspond to molecular formula C14H18N2O3S2H
+ (error, -0.72 ppm). HPLC 

purity, method G: tR = 5.365, area 97.49%. Method H: tR = 3.559, area 96.03%.  

6.2.5.2. Propyl [6-(propane-1-sulfonyl)-1,3-benzothiazol-2-yl]carbamate (40). Yield 48%. 

M.p. = 270 °C. IR (ATR): 3169m, 3125m, 2971s, 2936m, 2880m, 2771w, 1730s, 1598m, 

1550s, 1454m, 1405w, 1346w, 1306s, 1279s, 1231s, 1147s, 1103m, 1072m, 942w, 825w, 

784m, 757m, 710w cm−1. 1H NMR (500 MHz, CD3OD, δ): 12.37 (bs, N-H), 8.57 – 8.56 (m, 

2H), 7.88 – 7.84 (m, 2H), 4.18 (t, J = 6.6 Hz, 2H), 3.30 – 3.26 (m, 2H), 1.72 – 1.66 (m, 2H), 

1.60 – 1.53 (m, 2H), 0.96 – 0.89 (m, 6H).  13C NMR (125 MHz, CD3OD, δ): 164.40, 154.55, 

153.40, 133.75, 132.65, 125.91, 123.03, 120.99, 68.09, 57.20, 22.11, 16.76, 12.99, 10.57. 

(+)ESI-HRMS: m/z 343.07768 corresponds to molecular formula C14H18N2O4S2H
+ (error, -

1.16 ppm). HPLC purity, method G: tR = 5.253, area 98.21%. Method I: tR = 5.480, area 

97.67%. 

Full data are given in Supplementary material. 

6.3. Biological methods 

6.3.1. NCI in vitro antiproliferative screening  

Selected compounds were tested initially at a single high dose (10 µM) in the full NCI 60 cell 

panel through the developmental therapeutics program (DTP) in National Cancer Institute, 
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Bethesda, MD, USA for evaluating their antiproliferative activity. The compounds which 

exhibited significant growth inhibition in One-dose Screen, progressed to the full 5-dose 

assay. The human tumor cell lines of the 60 cells panel were grown in RPMI 1640 medium 

containing 5% fetal bovine serum and 2 mM L-glutamine. Cells were inoculated into 96 well 

microtiter plates in 100 µL at plating densities ranging from 5,000 to 40,000 cells/well 

depending on the doubling time of individual cell lines. The plates were incubated at 37 °C, 

5% CO2, 95% air and 100% relative humidity for 24 h prior to addition of experimental drugs. 

Experimental compounds’ solutions in DMSO diluted with complete medium containing 

gentamicin were added to the wells in an appropriate manner resulting in final five drug 

concentrations, starting at maximum 10-4M, plus control. Following compound addition, the 

plates are incubated for an additional 48 h at 37°C, 5% CO2, 95% air, and 100% relative 

humidity. After incubation period the cell growth and viability was measured using the 

sulphorhodamine B (SRB) procedure. There are three dose response parameters calculated for 

each test compound, growth inhibition of 50% (GI50), total growth inhibition (TGI) and LC50 

which represents concentration of compound resulting in a 50% reduction in a measured 

protein at the end of the treatment as compared to that at the beginning. Values are calculated 

if the level of activity is reached. 

6.3.2. MTT assay  

Cell lines used in this study were obtained from the American Type Culture Collection 

(Rockville, MD) unless specified otherwise. Human breast adenocarcinoma cells (MCF-7), 

human melanoma cells (A375) and a single human lung fibroblast cell line (MRC-5) were 

maintained as monolayer culture in nutrient medium, A375 and MRC-5 cells in the Roswell 

Park Memorial Institute (RPMI) 1640 medium, while MCF-7 cells in the Dulbecco's 

Modified Eagle's Medium (DMEM). Human myelogenous leukemia cells (K562) were 

maintained in RPMI as cell suspension. Powdered RPMI 1640 medium, and DMEM modified 

medium, were purchased from Sigma Chemicals Co, USA. Nutrient medium RPMI 1640 was 

prepared in sterile deionized water, supplemented with penicillin (192 U/mL), streptomycin 

(200 µg/mL), 4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid (HEPES) (25 mM), L-

glutamine (3 mM) and 10% of heat-inactivated fetal calf serum, FCS (pH 7.2). Nutrient 

medium DMEM modified was prepared in sterile deionized water, supplemented with 

penicillin (192 U/mL), streptomycin (200 µg/ mL) and 10% of heat-inactivated FCS. The 

cells were grown at 37 °C in 5% CO2 and humidified air atmosphere, by twice weekly 

subculture. Human embryonal teratocarcinoma cell line (NT2/D1; kind gift of Prof. Paul 

Andrews, University of Sheffield, UK) was grown in DMEM- high glucose (4500 

mg/L glucose) supplemented with 10% fetal bovine serum (FBS), glutamine (2 mM), 

penicillin (100 U/mL)  and streptomycin (100 µg/mL), all purchased from Invitrogen™, NY, 
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USA, at 37 °C in 10% CO2 as described.59 The cytotoxic activity of benzothiazole derivatives 

against MCF-7, A375, K562, NT2/D1 and MRC-5 cell line was assessed using the MTT 

assay.60,61 After treatment with compounds in 96-well plates, 20 µL of MTT solution (3-(4,5-

dimethylthiazol-2-yl)-2, 5-dyphenyl tetrazolium bromide, Sigma-Aldrich, St. Louis, USA) 

was added to each well. Samples were incubated for a further 4 h, followed by the addition of 

100 µL of 10% SDS. Absorbance was measured the next day. Cell survival was calculated as 

an absorbance (A570 nm) ratio between treated and control cells multiplied by 100. IC50 was 

defined as the concentration of the agent that inhibited cell survival by 50% compared to the 

vehicle control. 

6.3.3. NCI toxicity determination in vivo  

Acute toxicity in a nontumored female athymic nude mice was assessed following standard 

procedure.62 A single mouse was given a single intraperitoneal (IP) injection of 400 mg/kg; a 

second mouse received a dose of 200 mg/kg and a third mouse received a single dose of 100 

mg/kg. Dose volumes were 1 µL/1 gm body weight. The standard vehicle used was 10% 

DMSO in saline/0.05% Tween 80. The mice were observed for a period of 2 weeks. The mice 

are allowed ad libitum feed and water. They were sacrificed if they lost more than 20% of 

their body weight or if there were other signs of significant toxicity. If all three mice were 

sacrificed, then the next three lower dose levels were tested in a similar way. The process was 

repeated until a tolerated dose was determined. 

6.3.4. Flow-cytometric analysis of cell cycle phase distribution  

Briefly, 2x105 cells/Petri dish (dimensions 60 × 15 mm, NUNC) were treated with 

investigated compounds as indicated. After collection, cells were fixed with ethanol and 

stained with propidium iodide, PI (Sigma-Aldrich, St. Louis, USA). Cell cycle phase 

distribution was analyzed by FACS Calibur Becton Dickinson flow cytometer using Cell 

Quest computer software (BD Biosciences, USA). 

6.3.5. Flow cytometric analysis of cyclin B1 expression  

Cells stained for FACS analysis were treated as described above. For intracellular cyclin 

staining the following antibodies were used: FITC-conjugated mouse anti-human cyclin B1 

(BD Pharmingen, San Diego, CA, USA), and IgG2a isotype controls (BD Pharmingen, San 

Diego, CA, USA). Briefly, cells were incubated with antibodies overnight at 4 °C, and 

washed twice with PBS containing 1% BSA. Cell pellets were resuspended in PBS/PI/DNase-

free RNase A and incubated in dark at room temperature for 30 min before acquisition. 

Samples were analyzed on a FACS-Calibur cytometer using Cell Quest software (BD 

Biosciences, USA). 

6.3.6. Apoptotic assay  
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Apoptotic rates were assessed with flow cytometry using the Annexin V–fluorescein 

isothiocyanate/propidium iodide kit (BD Pharmingen, San Diego, CA, USA). Samples were 

prepared according to manufacturer’s instructions. Flow cytometry analysis was performed 

using a FACS-Calibur cytometer using Cell Quest computer software (BD Biosciences, 

USA). 

6.3.7. Quantification of mitochondrial transmembrane potential  

Mitochondrial transmembrane potential (∆Ψm) was measured using a cationic fluorochrome 

Rhodamine 123 (Rh123, Sigma-Aldrich, St. Louis, USA) as described by Yan et al.34 Briefly, 

1 × 106 cells resuspended in 200 µL of phosphate buffered saline were stained with Rh123 

(2.5 µg/mL) for 30 min at 37 °C. After washing, samples were analyzed by flow cytometry 

using Cell Quest software (BD Biosciences, USA). 

6.3.8. Flow cytometric analysis of apoptotic markers  

Cells stained for FACS analysis were treated as described above. For detection of apoptotic 

cells the following antibodies was used: mouse anti-Bax (BD Pharmingen, San Diego, CA, 

USA), FITC-conjugated monoclonal Bcl-2 antibody (BD Pharmingen, San Diego, CA, USA). 

Briefly, cells were incubated with antibodies for 30 min at room temperature and washed 

twice with PBS containing 1% BSA. Cell pellets were resuspended in PBS and analyzed on a 

FACS-Calibur cytometer using Cell Quest software (BD Biosciences, USA). 

6.3.9. Intracellular staining  

For intracellular staining the following antibodies were used: mouse anti-p53 antibody 

(dilution 1:100, Dako, Glostrup, Denmark) and mouse anti-p73 (5 µg/mL, Merck Millipore, 

Darmstadt, Germany). Briefly, cells (5×105 cells/flask) were allowed to adhere for 24 h in 

standard conditions, and then treated as described above (MTT assay). After the stimulation 

period, cells were fixed immediately by adding pre-warmed Cytofix Buffer for 10 to 12 min 

at 37°C, and washed twice with PBS containing 1% BSA. After permeabilization of the cells 

using of Perm Buffer for 20 min at room temperature and washing, cells were incubated with 

antibodies at room temperature for 60 min protected from light, and washed twice with PBS 

containing 1% BSA. After appropriate incubation, cells were washed three times with PBS 

containing 1% BSA and incubated with the corresponding FITC-coupled secondary 

antibodies (dilution 1:100, BD Pharmingen, San Diego, CA, USA). Samples were analyzed 

on a FACS-Calibur cytometer using Cell Quest software (BD Biosciences, USA). 

6.3.10. Measurement of total intracellular reactive oxygen species  

Generation of reactive oxygen species (ROS) was measured using a ROS sensitive fluorescent 

probe, 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA). This probe can be oxidized to 

2′,7′-dichlorofluorescein (DCF) by ROS and exhibits increased green fluorescence intensity. 

Briefly, the cultured cells were treated with investigated substances and the untreated cells 
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were maintained as the control. After incubation period of 24 or 48 h, the cells were 

harvested, washed twice, resuspended in 10 mM DCFH-DA and incubated at 37 °C for 30 

min in the dark. The levels of intracellular ROS were examined with flow cytometry (FACS 

Calibur, BD Biosciences, USA). The excitation wavelength was 485 nm, and the 

fluorescence was measured at 530 nm. Data acquisition and analyses were carried out using 

Cell Quest software (BD Biosciences, USA). 

6.3.11. Wound-healing migration assay  

Migration of NT2/D1 cells was analyzed by wound-healing assay. NT2/D1 cells were grown 

to near confluence and wounded by scraping away regions of the monolayer with pipette tip. 

Cells were washed with Phosphate Buffer Solution (PBS) and treated either with tested 

compounds or vehicle control (DMSO). Cell migration was monitored 20 h post-wounding 

using DM IL LED Inverted Microscope (Leica) and photographed with Leica MC170 HD 

digital camera attached to the microscope. Cells migrated in cell free area were counted and 

results for treated cells were presented as a percentage of values obtained for vehicle control.  

6.3.12. Colony-forming and colony-growing assays  

In the colony-forming assay 600 NT2/D1 cells were seeded in 6 cm plates and immediately 

treated with tested compounds or vehicle control (DMSO). Media was changed every 48 h. 

Cells were stained with crystal violet solution on the seventh day after plating and counted 

using an inverted microscope. In the colony-growing assay, 750 cells were seeded in 6 cm 

plates and grew until colonies reached the size of ~10 cells. At this stage cells were treated 

with tested compounds or vehicle control (DMSO) and further grew till colonies consisted of 

~50 cells. At this point cells were stained with crystal violet and colonies containing more 

than 15 cells were counted using an inverted microscope. 

6.3.13. In vitro cell invasion assay  

Untreated and 24 h treated NT2/D1 cells were seeded in serum-free media at density 1×105 

cells/well in Transwell chambers (8-µm-pore filters, Termo Fisher Scientific) coated with 

Matrigel (1:3 dilution in serum-free media, Corning). Chemoattractant (media supplemented 

with 10% FCS) were added to lower chamber. After 48 h incubation surface of the upper 

chamber were wiped with cotton swabs and cells invaded the lower surface were stained with 

crystal violet. Inserts were then attached on glass slides and cells from five random 

microscopic fields were counted and photographed with Leica MC170 HD digital camera 

attached to the microscope. 
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• New antiproliferative benzothiazole  carbamates and amides are synthesized 

• Benzothiazoles induce apoptosis and G2/M arrest along with ROS reduction in MCF-7 cells  

• Detached NT2/D1 cells that underwent apoptosis point to anoikis  

• Benzothiazole derivatives strongly inhibit migration and invasiveness of NT2/D1 cells 

• The most potent compounds show no toxicity in vitro and in vivo 


