Supplementary data for article:

Djuric, A.; Gojgić-Cvijović, G. D.; Jakovljević, D. M.; Kekez, B.; Kojic, J. S.; Mattinen, M.-L.; Harju, I. E.; Vrvic, M. M.; Beškoski, V. Brachybacterium Sp CH-KOV3 Isolated from an Oil-Polluted Environment-a New Producer of Levan. *International Journal of Biological Macromolecules* **2017**, *104*, 311–321.

https://doi.org/10.1016/j.ijbiomac.2017.06.034

Supplementary material

Brachybacterium sp. CH-KOV3 isolated from an oil-polluted environment – a new producer of levan

Aleksandra Djurić¹, ²#, Gordana Gojgić-Cvijović², Dragica Jakovljević², Branka Kekez¹, Jovana Stefanović Kojić², Maya Lisa Mattinen³, Inka Elina Harju⁴, Miroslav M. Vrvić^{1, 2}, Vladimir P. Beškoski¹

¹University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, P.O.Box 158, 11001 Belgrade, Serbia

²University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, 11001 Belgrade, Njegoševa 12, Serbia

³Aalto University, School of Chemical Technology, Department of Forest Products Technology

Bioproduct Chemistry, PO Box 16300, FI-00076 Aalto, Finland

⁴Clinical Microbiology Laboratory, Turku University Hospital, Finland

*Corresponding authors:

<u>adjuric@chem.bg.ac.rs</u>, (AD), Department of Biochemistry, Faculty of Chemistry, University of Belgrade

Content

Table S-1. Physiological-biochemical characterization of isolate CH-KOV3.

Figure S-1. Molecular Phylogenetic analysis of genus *Brachybacterium* by Maximum Likelihood method.

Figure S-2. (A) Growth curve of *Brachybacterium* sp. KOV-3 under optimal conditions, with 100 g/L of sucrose and concentration of levan produced; (B) Effect of temperature (20, 28, 37, and 45 °C) on EPS production by *Brachybacterium* sp. CH-KOV3 at different time intervals (24, 72, 120 h), in BM with 100 g/L sucrose, pH 7.0, 5 days incubation and 200 rpm; (C) Effect of pH (5.0, 6.0, 7.0, and 8.0) on EPS production by *Brachybacterium* sp. CH-KOV3 at different time intervals (24, 72, 120 h), in BM with 100 g/L sucrose, 5 days at 28 °C and 200 rpm.

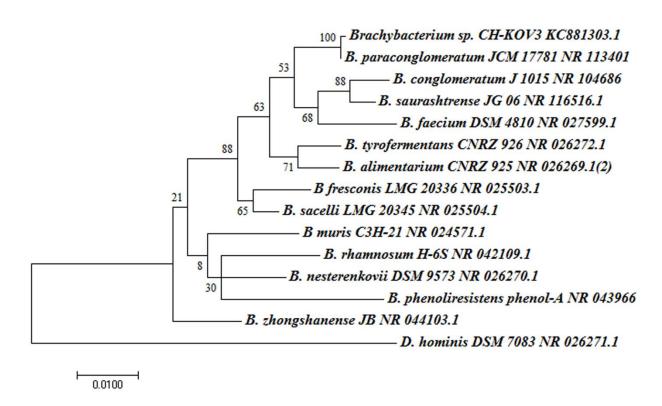
Figure S-3. Effect of sucrose concentration (60, 100, 140, 200, 300, 500, and 600 g/L) on EPS production by *Brachybacterium* sp. CH-KOV3 after 24, 48 and 72 hours. The highest yield of EPS was in media supplemented with 500 g/L of sucrose.

Figure S-4. Thin-layer chromatogram of partial hydrolyzate of purified EPS produced by *Brachybacterium* sp. CH-KOV3. Hydrolysis of EPS by oxalic acid performed at 80 °C for 20 min. Products of hydrolysis were examined in the solvent system chloroform:acetic acid:water (6:7:1 V/V/V). Fructose, glucose and sucrose were used as standards. **1** – Sucrose; **2** – Glucose; **3** – Fructose; **4** – 2 min; **5** – 4 min; **6** – 6 min; **7** – 8 min; **8** – 10 min; **9** – 12 min; **10** – 14 min; **11** – 16 min.

Figure S-5. The FT-IR spectrum of purified EPS.

Table S-1. Physiological-biochemical characterization of isolate CH-KOV3. + positive reaction; ++ strong positive reaction; - negative reaction; ND – not determinated.

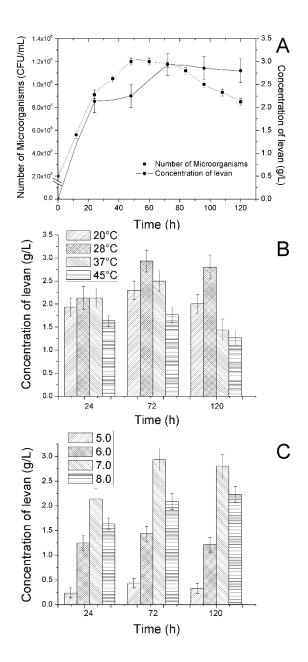
API ZYM

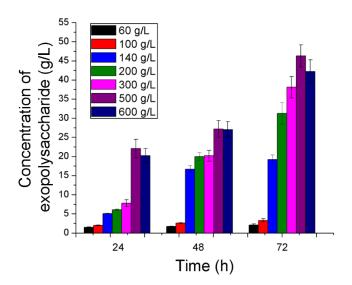

Enzyme assayed for	Control	Alkaline phosphatase	Esterase (C4)	Esterase Lipase (C 8)	Lipase (C 14)	Leucinearyl- amidase	Valinearyl- amidase	Cysteine arylamidase	Trypsin	α-chymotrypsin	
Substrate	/	2-naphthyl phosphate	2-naphthyl butyrate	2-naphthyl caprylate	2-naphthyl myristate	L-leucyl-2- naphthyl amide	L-valyl-2- naphthyl amide	L-cystyl-2- naphthyl amide	N-benzoyl-DL- arginine-2- naphthyl amide	N-glutaryl- phenylalanine-2- naphthyl amide	
Result	-	-	-	+	+	++	++	-	-	-	
Enzyme assayed for	Acid phosphatase	Naphtol-AS-BI- phospho- hydrolase	α-galactosidase	β- galactosidase	β- glucuronidase	α-glucosidase	β-glucosidase	N-acetyl-β- glucosamini- dase	α-mannosidase	α-fucosidase	
Substrate	2-naphthyl phosphate	Naphthol-AS-BI- phosphate	6-Br-2-naphthyl- αD- galactopyranoside	2-naphthyl-βD- galacto- pyranoside	Naphthol-AS- BI-βD- glucuronide	2-naphthyl-αD- gluco- pyranoside	6-Br-2- naphthyl-βD- gluco- pyranoside	1-naphthyl-N- acetyl-βD- glucosaminide	6-Br-2-naphthyl- αD-manno- pyranoside	2-naphthyl-αL-fuco- pyranoside	
Result	-	+	+	++	-	++	+	+	-	-	
API 20 NE											
					API 20 N	IE					
Enzyme assayed for	NO ₃	TRP	GLU	ADH	API 20 N	NE ESC	GEL	PNPG	GLU	ARA	
•	NO ₃ Potassium nitrate	TRP L-tryptophane	GLU D-glucose				GEL Gelatin	4- nitrophenyl- βD-galacto-	GLU D-glucose	ARA L-arabinose	
assayed for	Potassium			ADH	URE	ESC Esculin ferric		4- nitrophenyl-			
assayed for Substrate	Potassium nitrate		D-glucose	ADH	URE	ESC Esculin ferric citrate		4- nitrophenyl- βD-galacto- pyranoside			
assayed for Substrate Result Enzyme	Potassium nitrate +/-	L-tryptophane -	D-glucose -	ADH L-arginine	URE Urea -	ESC Esculin ferric citrate +	Gelatin -	4- nitrophenyl- βD-galacto- pyranoside +	D-glucose -	L-arabinose -	

API CORYNE

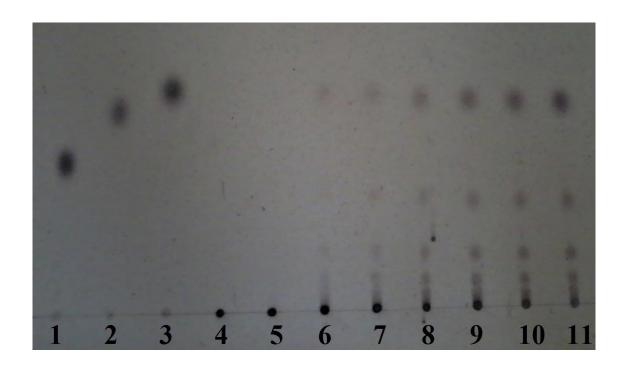
Enzyme										
assayed	NIT	PYZ	PYRA	PAL	βGUR	βGAL	αGLU	βNAG	ESC	URE
for					•	•		•		
Substrate	Potassium nitrate	Pyrazinecarboxamid	Pyroglutamic acid-β- naphthylamide	2-naphthyl phosphate	Naphthol ASBI- glucuronic acid	2-naphthyl-βD-galactopyranoside	2-naphthyl-αD-glucopyranoside	1-napthtyl N- acetyl-βD- glucosaminide	Esculin ferric citrate	Urea
Result	+	+	+	+	+	+	+	+	+	-
Enzyme										
assayed	GEL	O	GLU	RIB	XYL	MAN	MAL	LAC	SAC	GLYG
for										
Substrate	Gelatin	Negative control	D-glucose	D-ribose	D-xylose	Mannitol	D-maltose	D-lactose	D-sucrose	Glycogen
Result	-	-	-	-	-	-	-	-	-	-
					API 20) E				
Enzyme										
assayed	ONPG	ADH	LDC	ODC	CIT	H_2S	URE	TDA	IND	VP
for										
Substrate	2-nitrophenyl- ßd- galactopyranosi de	L-arginine	L-lysine	L-ornithine	trisodium citrate	sodium thiosulfate	Urea	L- tryptophane	L-tryptophane	Sodium pyruvate
Result	+	-	-	-	-	-	-	-	-	+
Enzyme										
assayed	GEL	GLU	MAN	INO	SOR	RHA	SAC	MEL	AMY	ARA
for										
Substrate	Gelatin (bovine origin)	D-glucose	D-mannitol	Inositol	D-sorbitol	L-rhamnose	D-sucrose	D-melibiose	Amygdalin	L-arabinose
Result	-	-	-	-	-	-	-	-	-	-

Table S-1. API tests results. + - positive reaction; +W - positive reaction; ++ strong positive reaction; - - negative reaction; ND - not determinated.


 NO_3 (20 NE) / NIT (CORYNE) – reduction of nitrates to nitrites; reduction of nitrates to nitrogen; TRP (20 NE) / IND (20 E) – Indole production; GLU – fermentation (glucose); ADH (API 20 E and NE) – arginine dihydrolase; URE (API 20 E, NE and CORYNE) – urease; ESC (API 20 NE and CORYNE) – hydrolysis (esculin); GEL (API 20 E, NE and CORYNE) - hydrolysis (gelatin); PNPG (API 20 NE), βGAL (CORYNE), ONPG (API 20 E) – β-galactosidase; GLU, ARA, MNE, MAN, NAG, MAL, GNT, CAP, ADI, MLT, CIT, PAC, RIB, XYL, LAC, SAC, GLYG, INO, SOR, RHA, MEL, AMY, ARA – assimilation (API 20 NE), fermentation (API CORYNE), fermentation / oxidation (API 20 E) (glucose, arabinose, mannose, mannitol, N-acetyl-glucosamine, maltose, potassium gluconate, capric acid, adipic acid, malate, trisodium citrate, phenylacetic acid, ribose, xylose, lactose, saccharose, glycogen, inositol, sorbitol, rhamnose, melibiose, amygdalin, arabinose); PYZ- pyrazinamidase; PYRA – Pyrrolidonyl arylamidase; PAL - Alkaline phosphatase; βGUR - β-glucuronidase; αGLU - α-glucosidase; βNAG - N-acetyl-β-glucosaminidase; LDC - Lysine decarboxylase; ODC - Ornithine decarboxylase; CIT - citrate utilization; H₂S - H2S production; TDA - Tryptophane deaminase; VP - acetoin production (Voges Proskauer).


Figure S-1. Molecular Phylogenetic analysis of genus *Brachybacterium* by Maximum Likelihood method.

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura-Nei model [1]. The tree with the highest log likelihood (-3134.1737) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.4900)). The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 45.2915% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 15 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment


gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 1338 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 [2].

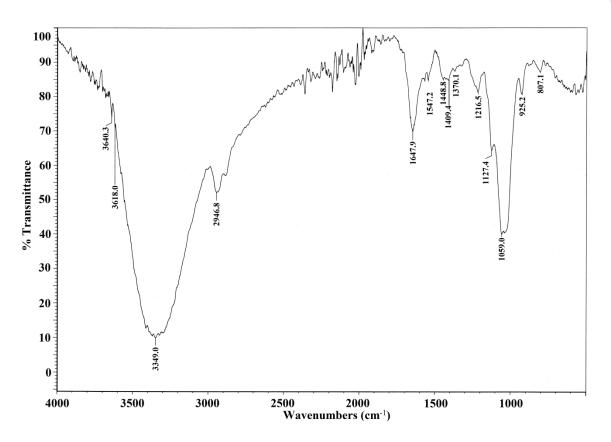

Figure S-2. (A) Growth curve of *Brachybacterium* sp. KOV-3 under optimal conditions, with 100 g/L of sucrose and concentration of levan produced; (B) Effect of temperature (20, 28, 37, and 45 °C) on EPS production by *Brachybacterium* sp. CH-KOV3 at different time intervals (24, 72, 120 h), in BM with 100 g/L sucrose, pH 7.0, 5 days incubation and 200 rpm; (C) Effect of pH (5.0, 6.0, 7.0, and 8.0) on EPS production by *Brachybacterium* sp. CH-KOV3 at different time intervals (24, 72, 120 h), in BM with 100 g/L sucrose, 5 days at 28 °C and 200 rpm.

Figure S-3. Effect of sucrose concentration (60, 100, 140, 200, 300, 500, and 600 g/L) on EPS production by *Brachybacterium* sp. CH-KOV3 after 24, 48 and 72 hours. The highest yield of EPS was in media supplemented with 500 g/L of sucrose.

Figure S-4. Thin-layer chromatogram of partial hydrolyzate of purified EPS produced by *Brachybacterium* sp. CH-KOV3. Hydrolysis of EPS by oxalic acid performed at 80 °C for 20 min. Products of hydrolysis were examined in the solvent system chloroform:acetic acid:water (6:7:1 V/V/V). Fructose, glucose and sucrose were used as standards. **1** – Sucrose; **2** – Glucose; **3** – Fructose; **4** – 2 min; **5** – 4 min; **6** – 6 min; **7** – 8 min; **8** – 10 min; **9** – 12 min; **10** – 14 min; **11** – 16 min.

Figure S-5. The FT-IR spectrum of purified EPS.

References:

- **1. Tamura K, Nei M.** 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution **10**:512-526.
- **2. Kumar S, Stecher G, Tamura K.** 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution **33**:1870-1874.