Supplementary material for the article:

Šoštarić, T. D.; Petrović, M. S.; Pastor, F. T.; Lončarević, D. R.; Petrović, J. T.; Milojković, J. V.; Stojanović, M. D. Study of Heavy Metals Biosorption on Native and Alkali-Treated Apricot Shells and Its Application in Wastewater Treatment. Journal of Molecular Liquids 2018, 259, 340–349. <u>https://doi.org/10.1016/j.molliq.2018.03.055</u>

Study of heavy metals biosorption on native and alkali-treated apricot shells and its application in wastewater treatment

Tatjana D. Šoštarić^{*a}, Marija S. Petrović^a, Ferenc T. Pastor^{b,c}, Davor R. Lončarević^d, Jelena T., Petrović^a, Jelena V. Milojković^a, Mirjana D. Stojanović^a

^a Institute for Technology of Nuclear and Other Mineral Raw Materials, Franchet d'Esperey 86, 11000 Belgrade, Serbia

^b University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia c Ghent University Global Campus, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, South

Korea

^c University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade, Serbia

Supplementary material

Fig. 1 The titration curves of mixtures of 1.5 g of SH (a) or SHM (b) and 30.0 cm³ of water titrated with 0.3 M HCl and NaOH solutions. The volumes of HCl and NaOH were recalculated on exactly 0.3000 M instead of actually used (0.3038 M HCl and 0.3010 M NaOH).

Fig. 2 Effect of operating parameters on adsorption capacity of SHM: (a) pH; (b) SHM dosage; (c) contact time and (d) initial metal concentration

Fig. 3 SEM micrographs of SHM: a) after Cu(II) adsorption (1000x); c) after Zn(II) adsorption (1000x); e) after Pb(II) adsorption (1000x); EDX spectrum of SHM: b) after Cu(II) adsorption; d) after Zn(II) adsorption; f) after Pb(II) adsorption.

Biomass /	C	N	0	Na	Μα	K	Ca	Cu	Zn	Ph
Element (wt.%)	C	1	0	114	wig	ĸ	Ca	Cu	ZII	10
SH	59.65	0.00	40.11	0.00	0.00	0.24	0.00	-	-	-
SHM	59.29	0.00	40.29	0.42	0.00	0.00	0.00	-	-	-
SHM-Cu	57.93	0.00	39.88	0.00	0.00	0.00	0.00	2.20	-	-
SHM-Zn	53.06	0.00	44.10	0.00	0.00	0.00	0.00	-	2.79	-
SHM-Pb	57.96	0.00	36.00	0.00	0.00	0.00	0.00	-	-	6.03

Table 1 Elemental distribution of SH, SHM and SHM after metal adsorption

Fig. 4 FTIR-ATR spectra of SHM before and after adsorption of metals