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ABSTRACT 17 

Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 produces a novel bacteriocin, 18 

lactolisterin BU, with strong antimicrobial activity against many species of Gram-positive 19 

bacteria, including important food spoilage and food-borne pathogens such as Listeria 20 

monocytogenes, Staphylococcus aureus, Bacillus sp. and streptococci. Lactolisterin BU was 21 

extracted from the cell surface of BGBU1-4 by propan-2-ol and purified to homogeneity by 22 

C18 solid phase extraction and reversed phase HPLC. The molecular mass of the purified 23 

lactolisterin BU was 5160.94 Da and an internal fragment, AVSWAWQH, as determined by 24 

N-terminal sequencing, showed low level similarity with existing antimicrobial peptides. 25 

Curing and transformation experiments revealed the presence of a corresponding bacteriocin 26 

operon on the smallest plasmid pBU6 (6.2 kb) of strain BGBU1-4. Analysis of the bacteriocin 27 

operon revealed a leaderless bacteriocin of 43 amino acids that exhibited similarity to 28 

bacteriocin BHT-B (63%), from Streptococcus ratti, a bacteriocin with analogy to aureocin A. 29 

 30 

IMPORTANCE  31 

Lactolisterin BU, broad spectrum leaderless bacteriocin produced by L. lactis subsp. lactis bv. 32 

diacetylactis BGBU1-4 strain, expresses strong antimicrobial activity against food spoilage 33 

and food-borne pathogens such as Listeria monocytogenes, Staphylococcus aureus, Bacillus 34 

sp. and streptococci. Lactolisterin BU showed highest similarity with aureocin like 35 

bacteriocins produced by different bacteria. Operon for synthesis is plasmid located on the 36 

smallest plasmid pBU6 (6.2 kb) of strain BGBU1-4, indicating possible horizontal transfer 37 

among producers.  38 

 39 

Keywords: bacteriocin, lactolisterin BU, antilisterial activity40 
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INTRODUCTION 41 

Bacteria have the ability to produce an extraordinary array of different antagonistic 42 

compounds. These include bacteriocins, described as ribosomally synthesized hydrophobic 43 

peptides (1, 2) usually active against bacteria closely related to the producer. In addition, 44 

some bacteriocins have broader inhibitory spectra against medically important pathogens and 45 

food-spoilage bacteria (3). Based on structure, mechanism of action, biochemical and genetic 46 

characteristics, bacteriocins from lactic acid bacteria (LAB) are generally classified into two 47 

different groups: Class I bacteriocins (lantibiotics) contain unusual amino acids such as 48 

lanthionine and dehydrated amino acids as a result of post-translational modifications and 49 

Class II bacteriocins consisting of unmodified or peptides with minor modifications. 50 

Furthermore, Class II bacteriocins are subdivided into four subclasses: pediocin-like 51 

bacteriocins (class IIa), two-peptide bacteriocins (class IIb), cyclic bacteriocins (IIc) and 52 

linear non-pediocin-like bacteriocins (class IId) (4). Bacteriocins produced by LAB have been 53 

intensively explored from a fundamental perspective, for their potential applications as food 54 

preservatives and, more recently, in veterinary and human medicine as possible alternative to 55 

antibiotics. 56 

Positive properties of bacteriocins, which make them suitable for application in the food 57 

industry, they are inactive and non-toxic to eukaryotic cells and are sensitive to digestive 58 

proteases and so have little influence on gut microbiota. The application of bacteriocins (nisin 59 

and pediocin PA-1 are commercially available for food preservative uses) in the food 60 

industry provide many benefits such as the replacement of chemical preservatives or allowing 61 

the reduction of the intensity of heat treatment resulting in food that is more naturally 62 

preserved and with better sensorial and nutritional properties. Furthermore, bacteriocins are 63 

relatively thermostable and some of them can retain antimicrobial activity following 64 

pasteurization or sterilization. Also, some bacteriocins have a broad spectrum of antimicrobial 65 
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activity, so they can be used in foods as an effective method for extending shelf life and to 66 

control food-borne pathogens such as Staphylococcus aureus and Listeria monocytogenes (5, 67 

6). L. monocytogenes is of particular concern since it is the causative agent of listeriosis (it 68 

can traverse the intestinal, placental and blood/brain barriers in humans) a relatively rare 69 

disease with high fatality rates (12%) in Europe and (25%) in the United States. Because of 70 

that, in the most European countries and in the United Stated, there are zero-tolerance 71 

standards for the L. monocytogenes in ready-to-eat (RTE) food (7–10). 72 

Traditional fermented foods, such as cheeses produced from raw milk, are a rich ecological 73 

niche from which bacteriocin-producing LAB can be isolated (11). The indigenous LAB 74 

isolated from white brined cheeses from Serbia are good candidates for screening for 75 

antimicrobial substances as they are well adapted to the microbial environment`s in cheese 76 

and could therefore be the source of novel properties (12). 77 

Aureocins are new group of leaderless class II bacteriocins with broad spectrum of activity 78 

firstly isolated from Staphylococcus aureus. Aureocins act bactericidally on sensitive cells 79 

causing rapid lysis (13–15). According to their structure they could be classified into two 80 

main groups: multi-peptide (aureocin 70 like) and one peptide aureocins (aureocin A53 like).   81 

In a previous study, it was demonstrated that the crude extract obtained from cell free 82 

supernatant of the natural isolate Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 83 

inhibited growth, biofilm formation and reduced 24 h old biofilms of coagulase negative 84 

staphylococci and Listeria monocytogenes clinical isolates (16). The objective of this work 85 

was to purify and biochemically and genetically characterise the broad spectrum bacteriocin 86 

lactolisterin BU, produced by L. lactis subsp. lactis bv. diacetylactis BGBU1-4.  87 

 88 

 89 

90 
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RESULTS 91 

Localization of the genes coding bacteriocin(s) production 92 

The activity spectrum of L. lactis subsp. lactis bv. diacetylactis BGBU1-4 is broad, inhibiting 93 

different strains of Lactococcus, Lactobacillus, Enterococcus species and some pathogenic 94 

strains (16). Standard biochemical methods confirmed the proteinaceus nature of 95 

antimicrobial agent as it was found to be sensitive to proteinase K and pronase E. In addition, 96 

it was active against B464, a man-PTS deletion mutant derivative of IL1403 (17) suggesting 97 

that man-PTS is not a receptor for its antilisterial activity. To determine the bacteriocin coding 98 

genes location, a plasmid curing assay was performed. It was interesting to note that three 99 

types of plasmid-cured derivatives were obtained which differed in activity spectrum and size 100 

of the inhibition zone in agar well diffusion assays. It was noticed that derivative BGBU1-4/2, 101 

showed a reduced zone of inhibition against L. lactis subsp. lactis BGMN1-596 and L. 102 

monocytogenes ATCC 19111 compared to the parental strain and were sensitive to the 103 

parental strain. Derivatives BGBU1-4/29 and BGBU1-4/8 did not show antimicrobial activity 104 

against BGMN1-596 and ATCC 19111 and were sensitive to the parental strain BGBU1-4 105 

and derivative BGBU1-4/2. The plasmid profile analysis showed differences between parental 106 

strain BGBU1-4 and derivatives; derivative BGBU1-4/2 lost the plasmids pBU12 and pBU20, 107 

BGBU1-4/8 lost the smallest plasmid (pBU6) and pBU12, while in derivative BGBU1-4/29 108 

three plasmids (pBU6, pBU12 and pBU20) were absent (Fig. 1). These results indicate that 109 

strain BGBU1-4 synthesizes at least two bacteriocins active against Lactococcus sp. and L. 110 

monocytogenes strains that are encoded on plasmids’. It was possible to conclude that there is 111 

a direct correlation between the presence/absence of plasmid pBU6 and bacteriocin activity 112 

and most likely that the operon for the synthesis of the second bacteriocin is located on the 113 

plasmid pBU12. 114 

Purification and identification of bacteriocin(s) 115 
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The bacteriocin(s) produced by strain BGBU1-4 were purified by RP-HPLC and the 116 

molecular mass of the active peptides determined by MALDI-TOF MS. The RP-HPLC 117 

chromatogram showed dominant peaks (Fig. 2) (fractions 30 and 37) that were active against 118 

L. lactis subsp. lactis BGMN1-596 and L. monocytogenes ATCC 19111. Mass spectrometry 119 

analysis determined the molecular mass of fraction 30 at 3642.62 Da and fraction 37 at 120 

5160.94 Da. As fraction 37 was most active it was selected for further characterization. 121 

N-terminal sequencing of protein fraction 37 122 

N-terminal sequencing of the native peptide in fractions 30 and 37 failed most probably due to 123 

a blocked N terminus. N-terminal sequencing was challenged two times without success. To 124 

circumvent this, native peptides were digested with trypsin and N-terminal sequening of an 125 

internal  fragments were done.  Internal 1112.61 Da fragment of protein from fraction 37 126 

revealed the amino acid sequence AVSWAWQH, which corresponds to lactolisterin BU 127 

residues 16-23 (Fig. 4), while N-terminal sequencing of peptides from fraction 30 failed two 128 

times and work was continued only on fraction 37 (lactolisterin BU). Lactolisterin BU is a 129 

leaderless peptide and consequently the N terminal amino acid is formylmethionine rather 130 

than methioine as there is no cleavage of the leader peptide. The formyl group of 131 

formylmethionine blocks the alpha carbon of the amino acid making it inaccessable to 132 

phenylisothiocyanate (PITC), the reagent used in N terminal sequencing (18). MALDI TOF 133 

MS was also used to confirm the presence of formylmethionine. Addition of a formyl group 134 

results in a 28 Da increase in mass which is in good agreement with the 29 Da mass 135 

difference oserved when the mass of the native peptide (5160.94 Da) was compared with the 136 

theoretical mass (5131.67 Da).  137 

Heterologous expression of the bacteriocin in Lactococcus lactis subsp. cremoris MG7284 138 

Plasmid curing indicates that genes for the synthesis and immunity of bacteriocins in strain L. 139 

lactis subsp. lactis bv. diacetylactis BGBU1-4 are located on plasmids. The smallest plasmid 140 
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named pBU6 (6.2 kb) from strain BGBU1-4 was isolated and used for transformation of the 141 

bacteriocin non-producer Lactococcus lactis subsp. cremoris MG7284 strain. GM17 agar 142 

plates containing lactolisterin BU, with concentration of 1,34 µM, were used to select for 143 

bacteriocin-resistant transformants. Obtained transformants were designated MG7284/pBU6 144 

and were used for further purification of lactolisterin BU. The plasmid profile analysis of 145 

transformants MG7284/pBU6 revealed that all transformants possess the smallest 6.2 kb 146 

plasmid and were found to be active against indicator strains BGMN1-596, ATCC 19111 and 147 

B464, confirming that man-PTS is not a receptor for its antilisterial activity (Fig. S1). 148 

Analysis of plasmid pBU6 149 

Plasmid pBU6 was sequenced in its entirety and submitted to the European Nucleotide 150 

Archive under accession No: LT629305.Sequence analysis of plasmid pBU6 revealed that it 151 

is a small rolling circle replicating (RCR) plasmid, which contains nine ORFs: repB, lliBU, 152 

abcT, hyp1, hyp2, hyp3, mobC, relM, RnaseY (Fig. 3, Table 2). 153 

In silico analysis revealed that RepB protein shows high similarity with lactobacilli and 154 

lactococcal RepB proteins (Lactobacillus fermentum and Lactococcus lactis; 155 

WP_011117039.1, WP_032951507.1, respectively). The N-terminal sequencing results of the 156 

peptide digest of fraction 37 identified lliBU as the structural gene, encoding a 43-amino acid 157 

peptide, which is responsible for production of the bacteriocin, lactolisterin BU. Lactolisterin 158 

BU is leaderless bacteriocin rich in amino acids glycine and tryptophan (each 11.6%) with pI 159 

10.16. Interestingly, this protein shows highest similarity with bacteriocin BHT-B from 160 

Streptococcus ratti, (63%, AAZ76605.1; (19)) and other aureocin A like bacteriocins (Fig. 4).  161 

Downstream of the lliBU gene ORF designated as abcT (212 aa) encodes a protein similar to 162 

the sugar ABC transporter ATP binding protein from Streptococcus ratti (62%, 163 

WP_003089811.1). One or more of the next three genes, hyp1 (212aa), hyp2 (169 aa), hyp3 164 

(92 aa), may encode a protein(s) that plays a role in producer immunity. The three genes 165 
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mobC (127 aa), relM (333 aa) and rnaseY (169 aa) encode proteins similar to the Mobilization 166 

protein C, WP_010729194.1, Relaxase/mobilization nuclease, WP_010730379.1, and 167 

Ribonuclease Y, WP_017865030.1, respectively. 168 

Biochemical characterisation of lactolisterin BU 169 

Antimicrobial activity of purified lactolisterin BU was unchanged after heat treatment at 170 

60°C, 80°C and 100°C for 15 and 30 min when compared with the control with MIC values 171 

of 0.67 µM against L. lactis subsp. lactis BGMN1-596 and 1.34 µM against L. 172 

monocytogenes ATCC19111.  173 

The growth kinetics and antimicrobial activity of transformant MG7284/pBU6 is shown in 174 

Fig. 5. Detectable levels of bacteriocin activity were recorded after 2 h of growth at 30°C. 175 

Maximum bacteriocin activity of the MG7284/pBU6 was achieved at the end of exponential 176 

phase while activity was lower against indicator strain Listeria monocytogenes ATCC 19111 177 

after 24 h growth (Fig. 5). 178 

Purified lactolisterin BU was active against various Gram-positive bacteria in micromolar 179 

concentrations of MICs. Lactolisterin BU showed relatively strong activity against Listeria 180 

monocytogenes ATCC 19111 as the MIC value of the bacteriocin was 1.34 µM. In addition 181 

lactolisterin BU showed very strong antimicrobial activity against Staphylococcus aureus 182 

ATCC 25923, Streptococcus pygoenes A2941 and Streptococcus pneumoniae P156 (Table 3). 183 

It is interesting that purified lactolisterin BU exhibited antimicrobial activity against 184 

lactolisterin BU producers (parental strain BGBU1-4, cured derivative BGBU1-4/2 and 185 

transformants MG7284/pBU6) with MIC value of 1.34 µM (Table 3). 186 

Mode of action of lactolisterin BU 187 

Results of L. monocytogenes ATCC 19111 culture growth (started with different number of 188 

cells) in the presence of different concentrations of lactolisterin BU strongly indicated that the 189 

effect of lactolisterin BU on the growth is not growth phase dependent. The strongest lysis of 190 
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bacteria was obtained when the cells were in the early logarithmic phase. With the increase in 191 

the number of cells, the effect of lactolisterin BU on stopping growth of sensitive bacteria is 192 

gradually decreased (when it was used in concentration of 1.34 µM, minimum inhibitory 193 

concentration), but at higher concentrations (4.02 and 13.4 µM) it exhibited strong inhibition 194 

of the growth of bacteria in all stages of growth (Fig. S2), indicating that it can be 195 

successfully used against pathogens and food contaminants that are in the stationary phase.  196 

An attempt to isolate a lactolisterin BU resistant mutant 197 

In our previous experiences in obtaining mutants resistant to bacteriocins we used two 198 

approaches: selection of spontaneous mutants and mutagenesis with N-methyl-N′-nitro-N-199 

nitrosoguanidine (20). We have successfully isolated mutants from both approaches but using 200 

mutagenesis we isolated greater number of mutants that showed greater diversity. First, we 201 

tried to isolate spontaneous mutants by spreading 500 µl of 10 times concentrated overnight 202 

cultures of sensitive strains on GM17 Petri dishes containing lactolisterin BU in 203 

concentrations of 1.34 µM and 2.68 µM (1 and 2 times MIC values). No mutant-resistant to 204 

lactolisterin BU was obtained indicating a possible different mechanism of action or that a 205 

mutation leading to resistance is lethal (target protein is essential). In order to confirm the 206 

impossibility of obtaining mutants resistant to lactolisterin BU, mutant banks of three 207 

sensitive strains (L. lactis subsp. lactis BGMN1-596, L. lactis subsp. cremoris MG7284 and 208 

Enterococcus faecalis BGZLS10-27) were constructed using N-methyl-N′-nitro-N-209 

nitrosoguanidine (which increases the chance of getting more mutations in each of the genes) 210 

and used to isolate resistant mutants by spreading of aliquots on selective GM17 Petri dishes 211 

containing lactolisterin BU. We did not manage to select the mutant resistant to lactolisterin 212 

BU from the mutant banks after three attempts per each strain, confirming the treatment that 213 

we applied did not yield mutant resistant to lactolisterin BU, or it is very difficult to isolate 214 

such a mutant.215 
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DISCUSSION 216 

Lactic acid bacteria are found in different ecological niches and, as a result of their efforts to 217 

adapt and survive, they produce various secondary metabolites among which are bacteriocins. 218 

Although, bacteriocins have been studied for almost seven decades, researchers still find them 219 

interesting due to their potential applications. In the last decade this field was broadened by 220 

their possible use instead of and/or in synergy with antibiotics to overcome the immense 221 

problem of increasein prevalence of antibiotic resistant bacteria (4). Natural isolates from 222 

traditionally prepared food products are a tremendous source of highly diverse, unique 223 

metabolites. These isolates come from harsh environments and contain genes that are usually 224 

lost in industrial strains. Lactococci commonly produce more than one bacteriocin and 225 

Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 strain produces at least two 226 

bacteriocins (21–23). Crude extract from cell free supernatant of the strain BGBU1-4 227 

demonstrated growth inhibition, and reduction of 24 h old biofilms formed by clinical isolates 228 

of Listeria monocytogenes and coagulase negative Staphylococcus sp., while prevention of 229 

biofilm formation was demonstrated for L. mocytogenes clinical isolates (16). Genes for 230 

bacteriocin lactolisterin BU production were plasmid pBU6 located which is not unusual (22–231 

25), but plasmid cured derivatives suggest that broad spectrum antimicrobial activity of strain 232 

BGBU1-4 is a consequence of production of at least two bacteriocins. Characterization of the 233 

anti-listerial bacteriocin purified by HPLC revealed that ORF lliBU on pBU6 encodes the 234 

lactolisterin BU structural gene. In addition, sequence analysis of lactolisterin BU, a 43-amino 235 

acid peptide, shows the highest similarity with BHT-B, a Class II bacteriocin from 236 

Streptococcus ratti. Although lactolisterin BU shows some characteristics of Class IIa (anti-237 

listerial activity and absence of unusual amino acids) bacteriocins it does not possess the 238 

highly conserved motif T-G-N-G-V/L generally found in “pediocin-like” bacteriocins with 239 

antilisterial activity and so cannot be classified as a Class IIa bacteriocin (26–28). Therefore it 240 
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is classified as a Class IId leaderless bacteriocin and can be compared to LsbB, Lacticin Q, 241 

Lacticin Z, aureocins A70 and A53, bacteriocins known to be synthesized and exported 242 

without a leader sequence (14, 15, 23, 29, 30). A comparative analysis of the amino acid 243 

sequences has shown that lactolisterin BU shares a conserved region AKYGxKAV with the 244 

majority of known aureocin A53 like bacteriocins (Fig. 4). It can be assumed, considering the 245 

variation in length and primary structure, that the region AKYGxKAV is responsible for the 246 

activity of aureocin A53 like bacteriocins. It is interesting that lactolisterin BU shows higher 247 

identity with BHT-B bacteriocin from Streptococcus ratti, (63%) than with lacticin Q and 248 

lacticin Z (33.9%) isolated from lactococci. Antilisterial activity of lactolisterin BU is not 249 

mediated by interaction with man-PTS, like in other Class II bacteriocins, as it showed 250 

antimicrobial activity on mutant B464 (17). 251 

Biochemical characterization showed that lactolisterin BU, like other bacteriocins, is sensitive 252 

to proteolytic enzymes, relatively thermostable, and has maximum production in early 253 

stationary phase (31–33). Lactolisterin BU has potential as a food preservative due to its 254 

strong antimicrobial activity (active in micromolar concentrations) against many species of 255 

Gram-positive bacteria, including important food spoilage and food-borne pathogens such as 256 

Listeria monocytogenes, Staphylococcus aureus, Bacillus sp. and Streptococcus sp.. 257 

Additionally, since production of many food products involves exposure to high temperature, 258 

the relative thermostability of lactolisterin BU is another desirable feature for its application 259 

in the food industry. The most desirable characteristic of lactolisterin BU for its use in 260 

controlling contaminants of food or pathogens is the inability to induce resistance that is most 261 

likely the result of a specific mechanism of action or an essential target molecule. Genes for 262 

bacteriocin production are often plasmid located enabling horizontal gene transfer between 263 

genera and it is expected that rearrangements during transfer results in novel peptides. It is 264 

assumed that a similar scenario happened with lactolisterin BU. The presence of a highly 265 
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conserved region between lactococcal bacteriocin lactolisterin BU, bacteriocin BHT-B from 266 

Streptococcus ratti, aureocin A53 from Staphylococcus aureus and aureocin A53 like 267 

bacteriocin from Corynebacterium jeikeium indicates a common origin of the bacteriocin 268 

operon. It is interesting that the homologous bacteriocin operon is present in such a wide 269 

variety of genera, which indicates that bacteriocin production confers an advantage to the 270 

carrier. The greater similarity between lactolisterin BU and aureocins from other bacteria than 271 

with lactococcal (lacticin Q and Z) indicates a different evolutionary pathway of these 272 

lactococcal bacteriocins. 273 

This work provides insight into a new and unusual Class II lactococcal bacteriocin, 274 

lactolisterin BU. Genetic and biochemical characteristics, activity spectrum, protease 275 

sensitivity, thermostability and inability or very rare occurrence of resistance recommend 276 

lactolisterin BU as good candidate for a safe, cheap and natural food preservative. Further 277 

experiments on lactolisterin BU in preventing L. monocytogenes development in products 278 

obtained from raw milk are ongoing. 279 

MATERIALS AND METHODS 280 

Bacterial strains and culture conditions 281 

The bacterial strains used in this study are listed in Table 1. The bacteriocin producer L. lactis 282 

subsp. lactis bv. diacetylactis BGBU1-4 was isolated from a three day old traditional semi-283 

hard cheese made from mixed cow (20%) and sheep (80%) milk (34). The cheese was 284 

produced without the use of starter cultures in a household in the village of Buzina, located on 285 

the mountain Beljanica in eastern Serbia. Lactococcal strains were grown in M17 medium 286 

(Merck GmbH, Darmstadt, Germany) supplemented with D-glucose (0.5% w/v) (GM17) at 287 

30°C. Lactobacillus strains were grown in MRS medium (Merck GmbH, Darmstadt, 288 

Germany). Non-lactococcal indicator strains were grown aerobically in Luria-Bertani (LB) 289 

broth at 37°C. Streptococcus strains were grown in Brain Heart Infusion (BHI) medium 290 
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(Oxoid, Basingstone, Hampshire, England) at 37°C and an atmosphere of 5% CO2. Solid 291 

medium and soft-agar were made by adding 1.5% or 0.7% (w/v) agar (Torlak, Belgrade, 292 

Serbia), to the liquid media, respectively.   293 

Spectrum and kinetics of bacteriocin activity 294 

The agar well diffusion assay was used to determine the antibacterial spectrum of the strain 295 

BGBU1-4 (33). Each indicator strain was inoculated into appropriate soft-agar, and wells 296 

(diameter 5 mm) were made in the plate. The wells were filled with 50 µL of sample and 297 

plates were incubated under appropriate conditions for the respective indicator strain (Table 298 

2). After 24 h of incubation, plates were examined for the presence of inhibition zones. A 299 

clear zone of inhibition around the wells was taken as evidence of bacteriocin production. 300 

To monitor kinetics of bacteriocin production/activity 100 mL of fresh preheated GM17 broth 301 

was inoculated with overnight culture (1% v/v) and incubated at 30°C. Samples were taken at 302 

0, 2, 4, 6, 8, 10, 12, and 24 h. Bacteriocin activity was determined by area zone of inhibition. 303 

L. monocytogenes ATCC 19111 and L. lactis subsp. lactis BGMN1-596 were used as 304 

indicator strains. 305 

Genetic characterization 306 

Plasmid curing experiments 307 

Plasmid curing assays were done by growing the bacterial cells of BGBU1-4 strain in the 308 

presence of novobiocin at sub-lethal temperatures as described previously (35). Preheated 309 

GM17 broth (42°C) containing novobiocin (5 µg/mL) was inoculated with 103 cells per mL. 310 

After 2 h of incubation, the cells were collected by centrifugation and resuspended in the 311 

same volume of fresh preheated novobiocin containing GM17 broth to avoid a bacteriocin-312 

killing effect on the cured cells. This step was repeated four times and end point aliquots (0.1 313 

mL) were plated onto GM17 agar plates, which were then incubated at 30°C for 48 h. 314 

Molecular methods 315 
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Derivatives obtained following plasmid curing experiments, and transformants were 316 

confirmed using pulsed field gel electrophoresis (PFGE) as described previously by Kojic et 317 

al., 2006 (23). For isolation of total DNA from lactococci, a modified version of the method 318 

described by Hopwood et al., 1985 (36) was used. Plasmid DNA from lactococci was isolated 319 

by the modified method previously described by O`Sullivan and Klaenhamer, 1993 (37). 320 

Plasmids were introduced into lactococci by electroporation using an Electroporator 321 

(Eppendorf, Hamburg, Germany) (38). Plasmid DNA was sequenced by the Macrogen 322 

Sequencing Service (Macrogen Europe, Amsterdam, The Netherlands). Nucleotide sequences 323 

were analysed using BLAST algorithm. The functions of the proteins encoded by the pBU6 324 

plasmid were attributed on the basis of homology with known proteins by using BLAST 325 

comparison with Entrez protein blast.  326 

Purification of the bacteriocin 327 

Lactolisterin BU was purified from the cells according to the method of Rea et al., 2007 (39) 328 

with the following modifications. Briefly, the cell pellet from a 2 litre culture grown in TY 329 

broth was resuspended in 250 mL of 70% (v/v) 2-propanol, 0.1% (v/v) TFA/L of broth and 330 

stirred at room temperature for 3-4 hours. Sample was centrifuged as at 8280 g for 20 minutes 331 

and cell supernatant retained for purification. The 2-propanol was evaporated using a rotary 332 

evaporator (Buchi Labortechnik AG, Flawil, Switzerland) and the sample applied to a 5 g (20 333 

mL) Strata C18-E SPE column (Phenomenex, Cheshire, UK) pre-equilibrated with methanol 334 

and water. The column was washed with 40 mL of 30% (v/v) ethanol, and the bacteriocin was 335 

eluted with 40 mL of 70% (v/v) 2-propanol, 0.1% (v/v) TFA. An aliquot of the cell C18 SPE 336 

70% 2-propanol, 0.1% TFA eluent was concentrated using rotary evaporation before 337 

separation of the peptides using RP-HPLC. Aliquots of approximately 4 mL were applied to a 338 

Phenomenex (Phenomenex, Macclesfield Cheshire, UK) Proteo Jupiter (RP)-HPLC column 339 

(250 × 10.0 mm, 4µ, 90Å) previously equilibrated with 25% acetonitrile, 0.1% TFA. Peptides 340 
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were eluted in a gradient of 30% acetonitrile containing 0.1% TFA to 70% acetonitrile 341 

containing 0.1% TFA over 40 minutes where buffer A is Milli Q water containing 0.1% TFA 342 

and buffer B is 90% acetonitrile containing 0.1% TFA and the flow rate was 2.5 mL/min. 343 

Fractions were collected at 1 minute intervals and assayed on Lactococcus lactis BGMN1-596 344 

and Listeria monocytogenes ATCC 19111indicator plates.  345 

MALDI TOF Mass spectrometry was performed on fractions exhibiting positive inhibitory 346 

activity, using an Axima TOF2 MALDI TOF mass spectrometer (Shimadzu Biotech, 347 

Manchester, UK), as described by Mills et al., 2011 (40). 348 

N-terminal sequencing of protein from fractions 30 and 37 349 

Protein fractions 30 and 37 that showed antimicrobial activity were sent to Department of 350 

Molecular and Biomedical Sciences “Jozef Stefan” Institute (Ljubljana, Slovenia) for N-351 

terminal sequencing by Edman degradation. N-terminal sequencing of the native peptides 352 

failed due to the presence of an N terminal formyl methionine so peptides  were digested with 353 

trypsin and trypsin fragments were sequenced on the second attempt. 354 

Determination of minimal inhibitory concentrations (MICs) 355 

The minimal inhibitory concentration of the lactolisterin BU was determined using the broth 356 

microdilution method proposed by Steinberg et al., 1997 (41). The microdilution testing assay 357 

used a mixture of the indicator strains (Table 1 and Table 3) and increasing concentrations of 358 

bacteriocin, lactolisterin BU. Microdilution testing, with in-house prepared panels was 359 

performed following the Clinical and Laboratory Standards Institute’s Performance Standards 360 

for Antimicrobial Susceptibility Testing (Twenty-Fourth Informational Supplement. CLSI 361 

document M100-S24). Indicator strains were diluted to 0.5 McFarland units from which 20 362 

µL were distributed to wells of a clear 96-well flat bottom microtiter plate. Concentration of 363 

pure lactolisterin BU was determined by spectroscopic method using theoretical extinction 364 

coefficient calculated from the peptide sequence as described by Blanusa et al., 2007 (42). 365 
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Lactolisterin BU (47 µM) was two-fold serially diluted to give a dilution series from 43 µM 366 

to 0.67 µM. The microtiter plates were incubated under appropriate conditions for 24 h, and 367 

the optical densities at 595 nm (OD595) were recorded at 30 min intervals (Infinite M200pro, 368 

Tecan, Switzerland). Values obtained were used to illustrate the antimicrobial activity of the 369 

bacteriocin lactolisterin BU. Control wells contained appropriate medium (blanks) and 370 

untreated culture. All experiments were done in triplicate. 371 

Effect of temperature treatment on lactolisterin BU activity 372 

Water dissolved purified lactolisterin BU (concentration of 47 µM), was incubated at 60°C, 373 

80°C and 100°C for 15 min and 30 min. After treatments, antimicrobial activity was 374 

determined using the broth microdilution method proposed by Steinberg et al., 1997 (41) as 375 

described above. The indicator strains were L. monocytogenes ATCC 19111 and L. lactis 376 

subsp. lactis BGMN1-596; untreated purified bacteriocin was used as a control. All 377 

experiments were done in triplicate. 378 

Mode of action of lactolisterin BU 379 

To analyze the effect of lactolisterin BU on the growth of the sensitive strain, purified 380 

lactolisterin BU (three different concentrations were used; 1.34 µM – minimal inhibitory 381 

concentration, 4.02 µM –three times higher than MIC, and 13.4 µM – ten times higher 382 

concentration than MIC) was added to the cultures of L. monocytogenes ATCC 19111 383 

inoculated with different number of bacteria (3 x 107, 3.3 x 108 and 2 x 109 cells/mL) in 384 

microtiter plates. Before the addition of bacteriocin, diluted bacterial cultures were incubated 385 

for 1 hour at the optimal growth temperature to refresh the cells. The bacterial growth was 386 

monitored by measurement of optical densities at 595 nm (OD595) that were recorded at 30 387 

min intervals (Infinite M200pro, Tecan, Switzerland) and by determination of viable bacterial 388 

cells (CFU) at every hour of growth. Control wells contained appropriate medium (blanks) 389 

and untreated cultures. All experiments were done in triplicate. 390 
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Mutagenesis of sensitive strains with N-methyl-N′-nitro-N-nitrosoguanidine. 391 

Cells from middle logarithmic growth phase (OD600 ~ 0.6-1) of sensitive strains (L. lactis 392 

subsp. lactis BGMN1-596, L. lactis subsp. cremoris MG7284 and Enterococcus faecalis 393 

BGZLS10-27) were harvested by centrifugation at 10 000 g for 10 min at 4°C and washed 394 

two times in the same volume of 100 mM sodium phosphate buffer (pH 7). Ten times 395 

concentrated cells in phosphate buffer were exposed to different concentrations of N-methyl-396 

N′-nitro-N-nitrosoguanidine (0, 25, 50, 100 and 200 µg/mL in phosphate buffer) for 1 h at 397 

30°C in dark. After treatment cells were washed two times with 10 times volume of phosphate 398 

buffer and finally resuspended in the same volume of GM17. Cultures were grown for 1 h at 399 

30°C in dark in order to recover cells and cell survive was determined by plating of 10 times 400 

dilutions on GM17 plates and incubation at 30°C for two days. Stabilised mutated cells were 401 

stored at -80°C by adding glycerol (final concentration 15%) until use.  402 
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FIGURE LEGENDS 555 

 556 

Figure 1. Plasmid profile analysis of parental strain L. lactis subsp. lactis bv. diacetylactis 557 

BGBU1-4 and its cured derivatives on 1% agarose gel. M - the upper part of GeneRuler 1kb 558 

DNA ladder Thermo Fisher Scientific (from top to bottom: 10 kb, 8, 6, 5, 4, 3.5, 3, 2.5, 2, 1.5, 559 

1, 0.75 kb), chrom – indicates position of chromosomal DNA. Only plasmids of the selected 560 

cured derivatives are shown in the figure, taken from the different positions of the gel. 561 

Figure 2. Reverse-phase high performance liquid chromatography chromatogram (A) (RP-562 

HPLC) and Matrix laser desorption ionization time of flight (MALDI-TOF) mass 563 

spectrometry data (B, C). Arrow indicates location of the antimicrobial peptide. 564 

Figure 3. Circular restriction map of plasmid pBU6. Only relevant restriction sites and their 565 

positions are indicated; unique restriction sites are indicated by bold letters. The position and 566 

orientation of the genes are indicated by arrows. 567 

Figure 4. Alignment of lactolisterin BU (SDR48784) amino acid sequence with homologous 568 

bacteriocins: lacticin Q from Lactococcus lactis QU5 (BAF57910.1), lacticin Z from 569 

Lactococcus lactis QU14 (BAF75975.1), bacteriocin BHT-B from Streptococcus ratti 570 

(DQ145753.1), aureocin A53 from Staphylococcus aureus (AAN71834) and aureocin A53 571 

like bacteriocin from Corynebacterium jeikeium (WP_010976360). Highlighted residues 572 

indicate conservation in at least five of the peptide sequences while an asterisk indicates 573 

completely conserved residues. ‘x’ corresponds to unconserved residues, periods indicate 574 

amino acids belonging to similar groups, and colons indicate amino acids belonging to the 575 

same group. 576 

Figure 5. Lactolisterin BU levels in culture relative to the cell density of Lactococcus lactis 577 

subsp. cremoris MG7284/pBU6 tested on L. monocytogenes ATCC 19111. Filled squares 578 

represent bacterial growth measured by colony forming units (CFU) circles indicate 579 
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corresponding bacteriocin activity determined by area of zone inhibition. Error bars represent 580 

standard deviations of three independent experiments. 581 
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Table 1. Strains used in this study 

Strains or plasmids Relevant characteristic(s) 
Source or  

reference 

Lactococcus lactis   

BGBU1-4 Bacteriocin producer (lactolisterin BU) (34) 

BGBU1-4/2 Derivate of BGBU1-4; Bac
+
; Bac

s 
This work 

BGBU1-4/8 Derivate of BGBU1-4; Bac
+
; Bac

s 
This work 

BGBU1-4/29 Derivate of BGBU1-4; Bac
-
; Bac

s
 This work 

BGMN1-596 Bac
-
, Bac

s
 (20) 

MG7284 Bac
-
, Bac

s
 (43) 

MG7284/pBU6 
MG7284 transformed with pBU6 plasmid 

(producer of lactolisterin BU) 
This work 

B464 Man-PTS deletion mutant of strain IL1403 (44) 

Lactobacillus casei BGHN14 Bac
-
, Bac

s
 (45) 

Listeria monocytogenes  ATCC19111 

Staphylococcus aureus  ATCC 25923 

Enterococcus faecalis  ATCC 29212 
Enterococcus faecalis 

BGZLS10-27 
 (46) 

Bacillus cereus  ATCC 11778 

Bacillus subtilis subsp. 

subtilis 
 ATCC23857 

Streptococcus pyogenes 

A2941 
 

Pasteur laboratory, 

Belgrade 

Streptococcus pneumonia 

P156 
 

Pasteur laboratory, 

Belgrade 

Escherichia coli H7:O157  ATCC 35150 

Pseudomonas aeruginosa  ATCC 27853 

Salmonella Typhimurium  ATCC 14028 

Salmonella Enteritidis  ATCC 13076 
Bac+ = bacteriocin producer, Bac- = non-bacteriocin producer, Bacs = sensitivity to lactolisterin BU; ATCC= 

American Type Culture Collection, Manassas, VA, USA 
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Table 2. Results of BLAST comparison of proteins encoded by plasmid pBU6 with Entrez protein database. The number of amino acids and the 

position from the beginning of the sequence of plasmid pBU6 are given for each ORF. 

orf (No. of amino 

acids) position* 

Proteins with the highest identity, accession 

number 

Predicted domain(s) or 

superfamily in encoded ORF 

Organism Amino acid 

identity (%) 

RepB (278 aa) 

80-916 

RepB, WP_011117039.1 

RepB, WP_032951507.1 

Rep_3 (pfam01051) Lactobacillus fermentum 

Lactococcus lactis 

90% 

85% 

LliBU (43 aa)  

1034-1165  

Aureocin-like bacteriocin, AAZ76605.1 Bacteriocin_Iii (pfam11758) Streptococcus ratti 63% 

AbcT (212 aa) 

1230-1868 

Sugar ABC transporter ATP-binding protein, 

WP_003089811.1 

ABC_DR_subfamily_A  

(CD03230) 

Streptococcus ratti 62% 

Hyp1 (212 aa)  

1861-2449 

Hypothetical protein, WP_003089809.1 / Streptococcus ratti 42% 

Hyp2 (169 aa) 

2503-3012 

Hypothetical protein, AAZ76608.1 / Streptococcus ratti 43% 

Hyp3 (92 aa)  

3531-3809 

Hypothetical protein WP_027822861.1 / Lactobacillus plantarum  51% 

MobC (127 aa)  

3829-4212 

Mobilization protein C, WP_010729194.1 

Hypothetical protein WP_011117545.1 

MobC (pfam05713) 

/ 

Enterococcus faecium 

Enterococcus faecalis 

41% 

55% 

RelM (333 aa)  

4194-5195 

Relaxase/mobilization nuclease, WP_010730379.1 Relaxase (pfam03432) Enterococcus faecium 51% 

RNaseY (169 aa)  

5219-5728 

Ribonuclease Y, WP_017865030.1 Phosphodiesterase (PRK12704) Lactococcus lactis 29% 

         aa = amino acid, * = position of gene on plasmid pBU6  
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Table 3. Antimicrobial spectra of purified lactolisterin BU  

Indicator strains MIC (µM) 

Lactococcus lactis subsp. lactis BGMN1-596 0.67 

Lactococcus lactis subsp. lactis BGBU1-4 1.34 

Lactococcus lactis subsp. lactis BGBU1-4/2 1.34 

Lactococcus lactis subsp. cremoris 

MG7284/pBU6 
1.34 

Lactobacillus casei BGHN14 0.67 

Listeria monocytogenes ATCC 19111 1.34 

Staphylococcus aureus ATCC 25923 0.67 

Enterococcus faecalis ATCC 29212 1.34 

Enterococcus faecalis BGZLS10-27 1.34 

Bacillus subtilis subsp. subtilis ATCC23857 5.375 

Bacillus cereus ATCC 11778 5.375 

Streptococcus pyogenes 0.67 

Streptococcus pnumoniae 0.67 

Escherichia coli H7:O157 ATCC 35150 N.A. 

Pseudomonas aeruginosa ATCC 27853 N.A. 

Salmonella Typhimurium ATCC 14028 N.A. 

Salmonella Enteritidis ATCC 13076 N.A. 
N.A.- no activity 
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