Supplementary data for the article:

Tadić, A.; Poljarević, J.; Krstić, M.; Kajzerberger, M.; Aranelović, S.; Radulović, S.; Kakoulidou, C.; Papadopoulos, A. N.; Psomas, G.; Grgurić-Šipka, S. Ruthenium-Arene Complexes with NSAIDs: Synthesis, Characterization and Bioactivity. *New Journal of Chemistry* **2018**, *42* (4), 3001–3019. https://doi.org/10.1039/c7nj04416j

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Ruthenium-arene complexes with NSAIDs: Synthesis, characterization and bioactivity

Ana Tadić,^a Jelena Poljarević,^a Milena Krstić,^b Marijana Kajzerberger,^c Sandra Aranđelović,^c Siniša Radulović,^c Chrisoula Kakoulidou,^d Athanasios N. Papadopoulos,^e George Psomas,^d Sanja Grgurić-Šipka^a

Supplementary material

S1. NMR spectra of synthesized complexes

^a Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia

^b Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia

^c Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia

^d Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, P.O. Box 135, GR-54124 Thessaloniki, Greece.

^e Department of Nutrition and Dietetics, Faculty of Food Technology and Nutrition, Alexandrion Technological Educational Institution, Sindos, Thessaloniki, Greece.

Figure S1. Parallel ¹H NMR spectra of ligand1 and complex 1

Figure S2. Parallel ¹³C NMR spectra of ligand 1 and complex 1

Figure S3. Parallel ^1H NMR spectra of ligand 2 and complex 2

Figure S4. Parallel 13 C NMR spectra of ligand 2 and complex 2

Figure S5. Parallel ¹H NMR spectra of ligand1 and complex 3

Figure S6. Parallel 13 C NMR spectra of ligand 1 and complex 3

Figure S7. Parallel 1H NMR spectra of ligand 2 and complex 4

Figure S8. Parallel ¹³C NMR spectra of ligand 2 and complex 4

S2. MTT assay

Table 1. IC₅₀ [μM] values obtained after 72 h of continuous drug action.

Compound	K562	A549	MDA-MB-231	MRC-5	*SI K562	*SI A549	*SI _{MDA-MB-231}
1	11.9±4.4	45.5±2.7	22±3.6	39.6±3.7	3.33	0.87	1.80
2	96.4 ± 2	145.1±6.4	153±1.2	222.6±23.9	2.31	1.53	1.45
3	13.2±6.2	31.7±1.15	26±1.7	42±1.3	3.18	1.32	1.62
4	133±7	142.4 ± 9.3	121.4±1.8	275.7±14.5	2.07	1.94	2.27
Hindo	155.9±11.4	161.5±13.9	244.7±17.8	230.5±17.8	1.48	1.43	0.94
Hmef	143.9±4.1	217.3±46.7	237.9 ± 18.8	>300	>2.08	>1.38	>1.26
CDDP	10.3±1.2	13.6±1.8	15.9±2.1	9.3±0.9	0.90	0.68	0.58

^{*} IC_{50} [μM] values are presented as the mean \pm SEM of three independent experiments. > 300 denotes that IC_{50} was not obtained in the range of concentrations tested up to 300 μM .

^{*}SI-selectivity index for tested complexes, ligands and cisplatin, in tumor cell lines (K562, A549 and MDA-MB-231), related to non-tumor MRC-5 cell line: SI_{K562} (IC₅₀ MRC-5/IC₅₀ K562), SI_{A549} (IC₅₀ MRC-5/IC₅₀ A549), SI_{MDA-MB-231}(IC₅₀ MRC-5/IC₅₀ MDA-MB-231). SI values for tested complexes and ligands were obviously higher than for cisplatin, particularly in MDA-MB-231 and K562.

S3. Interaction with biomolecules

S3-1. Interaction with serum albumins

The extent of the inner-filter effect can be roughly estimated with the following formula:

$$I_{corr} = I_{meas} \times 10^{\frac{\epsilon(\lambda_{exc})cd}{2}} \times 10^{\frac{\epsilon(\lambda_{em})cd}{2}}$$
 (eq. S1)

where I_{corr} = corrected intensity, I_{meas} = the measured intensity, c = the concentration of the quencher, d = the cuvette (1 cm), $\epsilon(\lambda_{exc})$ and $\epsilon(\lambda_{em})$ = the ϵ of the quencher at the excitation and the emission wavelength, respectively, as calculated from the UV-vis spectra of the complexes.¹

The Stern-Volmer and Scatchard graphs are used in order to study the interaction of a quencher with serum albumins. According to Stern-Volmer quenching equation: ²

$$\frac{\text{Io}}{I} = 1 + k_{q} \tau_{0}[Q] = 1 + K_{SV}[Q]$$
 (eq. S2)

where Io = the initial tryptophan fluorescence intensity of SA, I = the tryptophan fluorescence intensity of SA after the addition of the quencher (i.e. complexes **1-4**), k_q = the quenching constant, K_{SV} = the Stern-Volmer constant, τ_o = the average lifetime of SA without the quencher, [Q] = the concentration of the quencher) K_{SV} (in M^{-1}) can be obtained by the slope of the diagram Io/I versus [Q], and subsequently the quenching constant (k_q , in $M^{-1}s^{-1}$) is calculated from eq. S3, with τ_o = 10⁻⁸ s as fluorescence lifetime of tryptophan in SA,

$$K_{SV} = k_a \tau_o$$
 (eq. S3)

From the Scatchard equation:³

$$\frac{\Delta I/I_O}{I_O} = nK - K \frac{\Delta I}{I_O}$$
 (eq. S4)

where n is the number of binding sites per albumin and K is the SA-binding constant, K (in M^{-1}) is calculated from the slope in plots $(\Delta I/Io)/[Q]$ versus $\Delta I/Io$ and n is given by the ratio of y intercept to the slope.³

S3-2. Interaction with CT DNA

The DNA-binding constant (K_b , in M^{-1}) can be obtained by monitoring the changes in the absorbance at the corresponding λ_{max} with increasing concentrations of CT DNA and it is given by the ratio of slope to the y intercept in plots [DNA]/(ϵ_A - ϵ_f) versus [DNA], according to the Wolfe-Shimer equation:⁴

$$\frac{[DNA]}{(\varepsilon_{A} - \varepsilon_{f})} = \frac{[DNA]}{(\varepsilon_{b} - \varepsilon_{f})} + \frac{1}{K_{b}(\varepsilon_{b} - \varepsilon_{f})}$$
(eq. S5)

where [DNA] is the concentration of DNA in base pairs, $\epsilon_A = A_{obsd}/[compound]$, ϵ_f = the extinction coefficient for the free compound and ϵ_b = the extinction coefficient for the compound in the fully bound form.

S3-3. Competitive studies with EB

The Stern-Volmer constant (K_{SV} , in M^{-1}) is used to evaluate the quenching efficiency for each compound according to the Stern-Volmer equation (eq. S2),² where Io and I are the emission intensities of the EB-DNA solution in the absence and the presence of the quencher, respectively, [Q] is the concentration of the quencher (i.e. complexes **1-4**), τ_0 = the average lifetime of the emitting system without the quencher and k_q = the quenching constant. K_{SV} may be obtained from the Stern-Volmer plots by the slope of the diagram Io/I versus [Q]. Taking τ_0 = 23 ns as the fluorescence lifetime of the EB-DNA system,⁵ the quenching constants (k_q , in $M^{-1}s^{-1}$) of the compounds can be determined according to eq. (S3).

References

- 1 L. Stella, A.L. Capodilupo and M. Bietti, *Chem. Commun.*, 2008, 4744.
- J.R. Lakowicz, *Principles of Fluorescence Spectroscopy*, third ed., Plenum Press, New York, 2006.
- Y. Wang, H. Zhang, G. Zhang, W. Tao and S. Tang, J. Luminescence, 2007, 126, 211.
- 4 A. Wolfe, G. Shimer and T. Meehan, *Biochemistry*, 1987, **26**, 6392.
- 5 D.P. Heller and C.L. Greenstock, *Biophys. Chem.*, 1994, **50**, 305.

Table S2. The BSA and HSA binding constants and parameters (K_{sv}, k_q, K, n) for complexes 1-4.

Compound	Ksv (M ⁻¹)	k _q (M ⁻¹ s ⁻¹)	K (M ⁻¹)	n
BSA				
$K[Ru(\eta^6-p\text{-cymene})(indo)Cl_2], 1$	$1.25(\pm 0.05) \times 10^5$	$1.25(\pm 0.05) \times 10^{13}$	$4.49(\pm0.30)\times10^{5}$	0.68
$(NH_4)[Ru(\eta^6-p\text{-cymene})(mef)Cl_2], 2$	$1.70(\pm0.08)\times10^{5}$	$1.70(\pm 0.08) \times 10^{13}$	$3.63(\pm0.15)\times10^{5}$	0.86
$K[Ru(\eta^6-p\text{-toluene})(indo)Cl_2], 3$	$4.85(\pm0.11)\times10^{4}$	$4.85(\pm0.11)\times10^{12}$	$5.30(\pm0.18)\times10^4$	0.96
$(NH_4)[Ru(\eta^6-p\text{-toluene})(mef)Cl_2], 4$	$1.30(\pm0.04)\times10^{5}$	$1.30(\pm0.04)\times10^{13}$	$2.63(\pm0.10)\times10^{5}$	0.84
HSA				
$K[Ru(\eta^6-p\text{-cymene})(indo)Cl_2], 1$	$6.10(\pm0.29)\times10^4$	$6.10(\pm0.29)\times10^{12}$	$2.15(\pm0.08)\times10^{5}$	0.57
$(NH_4)[Ru(\eta^6-p\text{-cymene})(mef)Cl_2], 2$	$5.46(\pm0.19)\times10^4$	$5.46(\pm0.19)\times10^{12}$	$9.79(\pm0.34)\times10^{4}$	0.78
$K[Ru(\eta^6-p\text{-toluene})(indo)Cl_2], 3$	$2.04(\pm0.13)\times10^{4}$	$2.04(\pm0.13)\times10^{12}$	$9.44(\pm0.40)\times10^{4}$	0.31
$(NH_4)[Ru(\eta^6-p\text{-toluene})(mef)Cl_2],$ 4	4.32(±0.29)×104	4.32(±0.29)×1012	$4.24(\pm0.12)\times10^{5}$	0.37

Figure S9. Stern-Volmer quenching plot of HSA for complexes (A)-(D) 1-4, respectively.

Figure S10. Stern-Volmer quenching plot of BSA for complexes (A)-(D) 1-4, respectively.

Figure S11. Scatchard plot of HSA for complexes (A)-(D) 1-4, respectively.

Figure S12. Scatchard plot of BSA for complexes (A)-(D) 1-4, respectively.

Figure S13. Plot of [DNA]/ $(\varepsilon_A - \varepsilon_f)$ vs [DNA] for complexes (A)-(D) **1-4**, respectively.

Figure S14. Stern-Volmer quenching plot of EB-DNA fluorescence for complexes (A)-(D) **1-4**, respectively.