Supplementary data for the article:

Tadić, A.; Poljarević, J.; Krstić, M.; Kajzerberger, M.; Aranelović, S.; Radulović, S.; Kakoulidou, C.; Papadopoulos, A. N.; Psomas, G.; Grgurić-Šipka, S. Ruthenium-Arene Complexes with NSAIDs: Synthesis, Characterization and Bioactivity. New Journal of Chemistry 2018, 42 (4), 3001-3019. https://doi.org/10.1039/c7nj04416j

Ruthenium-arene complexes with NSAIDs: Synthesis, characterization and bioactivity

Ana Tadić, ${ }^{\text {a }}$ Jelena Poljarević, ${ }^{\text {a }}$ Milena Krstić, ${ }^{\text {b }}$ Marijana Kajzerberger, ${ }^{\text {c }}$ Sandra Aranđelović, ${ }^{\text {c }}$ Siniša Radulović, ${ }^{\text {c }}$ Chrisoula Kakoulidou, ${ }^{\text {d }}$ Athanasios N. Papadopoulos, ${ }^{\text {e }}$ George Psomas, ${ }^{\text {d }}$ Sanja Grgurić-Šipka ${ }^{\text {a }}$

${ }^{a}$ Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
${ }^{b}$ Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia
${ }^{c}$ Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
${ }^{d}$ Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, P.O. Box 135, GR-54124 Thessaloniki, Greece.
${ }^{e}$ Department of Nutrition and Dietetics, Faculty of Food Technology and Nutrition, Alexandrion Technological Educational Institution, Sindos, Thessaloniki, Greece.

Supplementary material

S1. NMR spectra of synthesized complexes

Figure S1. Parallel ${ }^{1} \mathrm{H}$ NMR spectra of ligand1 and complex 1

Figure S2. Parallel ${ }^{13} \mathrm{C}$ NMR spectra of ligand 1 and complex 1

Figure S3. Parallel ${ }^{1} \mathrm{H}$ NMR spectra of ligand 2 and complex 2
complex 2
ligand 2

Figure S4. Parallel ${ }^{13} \mathrm{C}$ NMR spectra of ligand 2 and complex 2

Figure S5. Parallel ${ }^{1} \mathrm{H}$ NMR spectra of ligand1 and complex 3

Figure S6. Parallel ${ }^{13} \mathrm{C}$ NMR spectra of ligand 1 and complex 3

Figure S7. Parallel ${ }^{1} \mathrm{H}$ NMR spectra of ligand 2 and complex 4
complex 4

ligand 2

Figure S8. Parallel ${ }^{13} \mathrm{C}$ NMR spectra of ligand 2 and complex 4

S2. MTT assay

Table 1. $\mathrm{IC}_{50}[\mu \mathrm{M}]$ values obtained after 72 h of continuous drug action.

Compound	K562	A549	MDA-MB-231	MRC-5	*SI $_{\text {K562 }}$	*SI $_{\text {A549 }}$	*SI $_{\text {MDA-MB-231 }}$
$\mathbf{1}$	11.9 ± 4.4	45.5 ± 2.7	22 ± 3.6	39.6 ± 3.7	3.33	0.87	1.80
$\mathbf{2}$	96.4 ± 2	145.1 ± 6.4	153 ± 1.2	222.6 ± 23.9	2.31	1.53	1.45
$\mathbf{3}$	13.2 ± 6.2	31.7 ± 1.15	26 ± 1.7	42 ± 1.3	3.18	1.32	1.62
$\mathbf{4}$	133 ± 7	142.4 ± 9.3	121.4 ± 1.8	275.7 ± 14.5	2.07	1.94	2.27
Hindo	155.9 ± 11.4	161.5 ± 13.9	244.7 ± 17.8	230.5 ± 17.8	1.48	1.43	0.94
Hmef	143.9 ± 4.1	217.3 ± 46.7	237.9 ± 18.8	>300	>2.08	>1.38	>1.26
CDDP	10.3 ± 1.2	13.6 ± 1.8	15.9 ± 2.1	9.3 ± 0.9	0.90	0.68	0.58

* $\mathrm{IC}_{50}[\mu \mathrm{M}]$ values are presented as the mean \pm SEM of three independent experiments. > 300 denotes that IC_{50} was not obtained in the range of concentrations tested up to $300 \mu \mathrm{M}$.
*SI-selectivity index for tested complexes, ligands and cisplatin, in tumor cell lines (K562, A549 and MDA-MB-231), related to non-tumor MRC-5 cell line: $\mathrm{SI}_{\mathrm{K} 562}\left(\mathrm{IC}_{50} \mathrm{MRC}-5 / \mathrm{IC}_{50} \mathrm{~K}_{562}\right), \mathrm{SI}_{\mathrm{A}_{549}}$ (IC_{50} MRC-5/IC S_{50} A549), $\mathrm{SI}_{\mathrm{MDA}}$-MB-231 $\left(\mathrm{IC}_{50} \mathrm{MRC}^{2} / \mathrm{IC}_{50}\right.$ MDA-MB-231). SI values for tested complexes and ligands were obviously higher than for cisplatin, particularly in MDA-MB-231 and K562.

S3. Interaction with biomolecules

S3-1. Interaction with serum albumins

The extent of the inner-filter effect can be roughly estimated with the following formula:

$$
\begin{equation*}
I_{\text {corr }}=I_{\text {meas }} \times 10^{\frac{\varepsilon\left(\lambda_{\text {ex }}\right) \mathrm{cd}}{2}} \times 10^{\frac{\varepsilon\left(\lambda_{\text {em }}\right) \mathrm{cd}}{2}} \tag{eq.S1}
\end{equation*}
$$

where $\mathrm{I}_{\text {corr }}=$ corrected intensity, $\mathrm{I}_{\text {meas }}=$ the measured intensity, $\mathrm{c}=$ the concentration of the quencher, $\mathrm{d}=$ the cuvette $(1 \mathrm{~cm}), \varepsilon\left(\lambda_{\text {exc }}\right)$ and $\varepsilon\left(\lambda_{\mathrm{em}}\right)=$ the ε of the quencher at the excitation and the emission wavelength, respectively, as calculated from the UV-vis spectra of the complexes. ${ }^{1}$

The Stern-Volmer and Scatchard graphs are used in order to study the interaction of a quencher with serum albumins. According to Stern-Volmer quenching equation: ${ }^{2}$

$$
\begin{equation*}
\frac{\mathrm{I}}{\mathrm{I}}=1+\mathrm{k}_{\mathrm{q}} \tau_{0}[\mathrm{Q}]=1+\mathrm{K}_{\mathrm{sv}}[\mathrm{Q}] \tag{eq.S2}
\end{equation*}
$$

where $\mathrm{Io}=$ the initial tryptophan fluorescence intensity of SA, $\mathrm{I}=$ the tryptophan fluorescence intensity of SA after the addition of the quencher (i.e. complexes $\mathbf{1 - 4}$), $\mathrm{k}_{\mathrm{q}}=$ the quenching constant, $\mathrm{K}_{\mathrm{SV}}=$ the Stern-Volmer constant, $\tau_{\mathrm{o}}=$ the average lifetime of SA without the quencher, $[\mathrm{Q}]=$ the concentration of the quencher) K_{SV} (in M^{-1}) can be obtained by the slope of the diagram Io/I versus $[\mathrm{Q}]$, and subsequently the quenching constant $\left(\mathrm{k}_{\mathrm{q}}\right.$, in $\left.\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ is calculated from eq. S 3 , with $\tau_{\mathrm{o}}=10^{-8}$ s as fluorescence lifetime of tryptophan in SA,

$$
\begin{equation*}
\mathrm{K}_{\mathrm{SV}}=\mathrm{k}_{\mathrm{q}} \tau_{\mathrm{o}} \tag{eq.S3}
\end{equation*}
$$

From the Scatchard equation: ${ }^{3}$

$$
\begin{equation*}
\frac{\Delta \mathrm{I} / \mathrm{Io}}{[\mathrm{Q}]}=\mathrm{nK}-\mathrm{K} \frac{\Delta \mathrm{I}}{\mathrm{Io}} \tag{eq.S4}
\end{equation*}
$$

where n is the number of binding sites per albumin and K is the SA-binding constant, K (in M^{-1}) is calculated from the slope in plots $(\Delta \mathrm{I} / \mathrm{Io}) /[\mathrm{Q}]$ versus $\Delta \mathrm{I} / \mathrm{Io}$ and n is given by the ratio of y intercept to the slope. ${ }^{3}$

S3-2. Interaction with CT DNA

The DNA-binding constant $\left(\mathrm{K}_{\mathrm{b}}\right.$, in $\left.\mathrm{M}^{-1}\right)$ can be obtained by monitoring the changes in the absorbance at the corresponding $\lambda_{\max }$ with increasing concentrations of CT DNA and it is given by the ratio of slope to the y intercept in plots $[\mathrm{DNA}] /\left(\varepsilon_{A}-\varepsilon_{f}\right)$ versus [DNA], according to the WolfeShimer equation: ${ }^{4}$

$$
\begin{equation*}
\frac{[\mathrm{DNA}]}{\left(\varepsilon_{\mathrm{A}}-\varepsilon_{\mathrm{f}}\right)}=\frac{[\mathrm{DNA}]}{\left(\varepsilon_{\mathrm{b}}-\varepsilon_{\mathrm{f}}\right)}+\frac{1}{\mathrm{~K}_{\mathrm{b}}\left(\varepsilon_{\mathrm{b}}-\varepsilon_{\mathrm{f}}\right)} \tag{eq.S5}
\end{equation*}
$$

where [DNA] is the concentration of DNA in base pairs, $\varepsilon_{\mathrm{A}}=\mathrm{A}_{\mathrm{obsd}} /[$ compound $], \varepsilon_{\mathrm{f}}=$ the extinction coefficient for the free compound and $\varepsilon_{b}=$ the extinction coefficient for the compound in the fully bound form.

S3-3. Competitive studies with EB

The Stern-Volmer constant (K_{sv}, in M^{-1}) is used to evaluate the quenching efficiency for each compound according to the Stern-Volmer equation (eq. S2), ${ }^{2}$ where Io and I are the emission intensities of the EB-DNA solution in the absence and the presence of the quencher, respectively, [Q] is the concentration of the quencher (i.e. complexes 1-4), $\tau_{0}=$ the average lifetime of the emitting system without the quencher and $\mathrm{k}_{\mathrm{q}}=$ the quenching constant. $\mathrm{K}_{\text {sv }}$ may be obtained from the Stern-Volmer plots by the slope of the diagram Io/I versus [Q]. Taking $\tau_{o}=23 \mathrm{~ns}$ as the fluorescence lifetime of the EB-DNA system, ${ }^{5}$ the quenching constants (k_{q}, in $\mathrm{M}^{-1} \mathrm{~s}^{-1}$) of the compounds can be determined according to eq. (S3).

References

1 L. Stella, A.L. Capodilupo and M. Bietti, Chem. Commun., 2008, 4744.
2 J.R. Lakowicz, Principles of Fluorescence Spectroscopy, third ed., Plenum Press, New York, 2006.
3 Y. Wang, H. Zhang, G. Zhang, W. Tao and S. Tang, J. Luminescence, 2007, 126, 211.
4 A. Wolfe, G. Shimer and T. Meehan, Biochemistry, 1987, 26, 6392.
5 D.P. Heller and C.L. Greenstock, Biophys. Chem., 1994, 50, 305.

Table S2. The BSA and HSA binding constants and parameters ($\mathrm{K}_{\mathrm{sv}}, \mathrm{k}_{\mathrm{q}}, \mathrm{K}, \mathrm{n}$) for complexes 1-4.

Compound	$\mathbf{K s v}\left(\mathbf{M}^{-1}\right)$	$\mathbf{k}_{\mathbf{q}}\left(\mathbf{M}^{-1} \mathbf{s}^{-1}\right)$	$\mathbf{K}\left(\mathbf{M}^{-1}\right)$	\mathbf{n}
BSA				
$\mathrm{K}\left[\mathrm{Ru}\left(\eta^{6}-p\right.\right.$-cymene $)($ indo $\left.) \mathrm{Cl}_{2}\right], \mathbf{1}$	$1.25(\pm 0.05) \times 10^{5}$	$1.25(\pm 0.05) \times 10^{13}$	$4.49(\pm 0.30) \times 10^{5}$	0.68
$\left(\mathrm{NH}_{4}\right)\left[\mathrm{Ru}\left(\eta^{6}-p\right.\right.$-cymene $\left.)\left(\mathrm{mef}^{2}\right) \mathrm{Cl}_{2}\right], \mathbf{2}$	$1.70(\pm 0.08) \times 10^{5}$	$1.70(\pm 0.08) \times 10^{13}$	$3.63(\pm 0.15) \times 10^{5}$	0.86
$\mathrm{~K}\left[\mathrm{Ru}\left(\eta^{6}-p\right.\right.$-toluene $)($ indo $\left.) \mathrm{Cl}_{2}\right], \mathbf{3}$	$4.85(\pm 0.11) \times 10^{4}$	$4.85(\pm 0.11) \times 10^{12}$	$5.30(\pm 0.18) \times 10^{4}$	0.96
$\left(\mathrm{NH}_{4}\right)\left[\mathrm{Ru}\left(\eta^{6}-p\right.\right.$-toluene $\left.\left.)(\mathrm{mef})\right) \mathrm{Cl}_{2}\right], \mathbf{4}$	$1.30(\pm 0.04) \times 10^{5}$	$1.30(\pm 0.04) \times 10^{13}$	$2.63(\pm 0.10) \times 10^{5}$	0.84
HSA				
$\mathrm{K}\left[\mathrm{Ru}\left(\eta^{6}-p\right.\right.$-cymene $)($ indo $\left.) \mathrm{Cl}_{2}\right], \mathbf{1}$	$6.10(\pm 0.29) \times 10^{4}$	$6.10(\pm 0.29) \times 10^{12}$	$2.15(\pm 0.08) \times 10^{5}$	0.57
$\left(\mathrm{NH}_{4}\right)\left[\mathrm{Ru}\left(\eta^{6}-p\right.\right.$-cymene $\left.)\left(\mathrm{mef}^{2}\right) \mathrm{Cl}_{2}\right], \mathbf{2}$	$5.46(\pm 0.19) \times 10^{4}$	$5.46(\pm 0.19) \times 10^{12}$	$9.79(\pm 0.34) \times 10^{4}$	0.78
$\mathrm{~K}\left[\mathrm{Ru}\left(\eta^{6}-p\right.\right.$-toluene $)($ indo $\left.) \mathrm{Cl}_{2}\right], \mathbf{3}$	$2.04(\pm 0.13) \times 10^{4}$	$2.04(\pm 0.13) \times 10^{12}$	$9.44(\pm 0.40) \times 10^{4}$	0.31
$\left(\mathrm{NH}_{4}\right)\left[\mathrm{Ru}\left(\eta^{6}-p\right.\right.$-toluene $\left.)\left(\mathrm{mef}^{2}\right) \mathrm{Cl}_{2}\right], \mathbf{4}$	$4.32(\pm 0.29) \times 104$	$4.32(\pm 0.29) \times 1012$	$4.24(\pm 0.12) \times 10^{5}$	0.37

Figure S9. Stern-Volmer quenching plot of HSA for complexes (A)-(D) 1-4, respectively.

Figure S10. Stern-Volmer quenching plot of BSA for complexes (A)-(D) 1-4, respectively.

Figure S11. Scatchard plot of HSA for complexes (A)-(D) 1-4, respectively.

Figure S12. Scatchard plot of BSA for complexes (A)-(D) 1-4, respectively.

Figure S13. Plot of [DNA] $/\left(\varepsilon_{A}-\varepsilon_{f}\right)$ vs [DNA] for complexes (A)-(D) 1-4, respectively.

Figure S14. Stern-Volmer quenching plot of EB-DNA fluorescence for complexes (A)-(D) 1-4, respectively.

