Supplementary data for article:

Filipović, N. R.; Bjelogrlić, S. K.; Pelliccia, S.; Jovanović, V. B.; Kojić, M.; Senćanski, M.; La Regina, G.; Silvestri, R.; Muller, C. D.; Todorović, T. R. Selenotriapine - An Isostere of the Most Studied Thiosemicarbazone with Pronounced pro-Apoptotic Activity, Low Toxicity and Ability to Challenge Phenotype Reprogramming of 3-D Mammary Adenocarcinoma Tumors, 2017. <u>https://doi.org/10.1016/j.arabjc.2017.11.017</u>

SUPPLEMENTARY DATA

Selenotriapine – an isostere of the most studied thiosemicarbazone with pronounced pro-apoptotic activity, low toxicity and ability to challenge phenotype reprogramming of 3-D mammary adenocarcinoma tumors

Nenad R. Filipović^a, Snežana K. Bjelogrlić^b, Sveva Pelliccia^c, Vesna B. Jovanović^d, Milan Kojić^e, Milan Senćanski^f, Giuseppe La Regina^g, Romano Silvestri^g, Christian D. Muller^{h,*}, Tamara R. Todorović^{d,*}

^a Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade, Serbia

^b National Cancer Research Center of Serbia, Pasterova 14, Belgrade, Serbia

^c Dipartimento di Farmacia, Università di Napoli "Federico II", via D. Montesano 49, 80131 Naples, Italy

^d Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia

^e Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia

^f Center for Multidisciplinary Research, Institute of Nuclear Sciences "Vinča", University of Belgrade, Belgrade, Serbia

^{*g*} Dipartimento di Chimica e Tecnologie del Farmaco, Laboratory affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Universitaà di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy

^h Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS Université de Strasbourg, 67401 Illkirch, France

*Authors for correspondence: Dr Tamara R. Todorović, Faculty of Chemistry, University of Belgrade, Studentskitrg 12-16, Belgrade, Serbia, +381(0)11-3336-731, tamarat@chem.bg.ac.rs

Dr Christian D. Muller, InstitutPluridisciplinaire Hubert Curien, UMR 7178 CNRS Université de

Strasbourg, 67401 Illkirch, France, +33(0)6-88-27-57-39, cdmuller@unistra.fr

Content

Experimental
HSA binding experiments
Figure S1. UV/vis spectrum of Se-3-AP
Figure S2. Fluorescence spectrum of Se-3-AP4
Figure S3. ¹ H-NMR spectrum of Se-3-AP
Figure S4. ¹³ C-NMR spectrum of Se-3-AP
Figure S5. COSY spectrum of Se-3-AP
Figure S6. ¹ H- ¹³ C HSQC spectrum of Se-3-AP
Figure S7. ¹ H- ¹³ C HMBC spectrum of Se-3-AP
Figure S8. ⁷⁷ Se-NMR spectrum of Se-3-AP7
Figure S9. Cyclic voltammograms of Se-3-AP and 3-AP
Figure S10. Concentration-response curves
Figure S11. Changes in distribution of MCF-7 cells within phases of mitotic division
Figure S12 . Stern-Volmer plot of F_0/Fvs [Q] at three different temperatures
Figure S13. Modified Stern-Volmer plot
Figure S14 . The plot of $\ln K_b vs 1/T$ for the interaction of Se-3-AP with HSA
Figure S15 . Double-log plot for determination of binding constants K_b , and the number of binding sites <i>n</i> at three temperatures
References

Experimental

HSA binding experiments. A ligand (quencher) can absorb energy at both the HSA excitation (280 nm) and emission (340 nm) wavelengths. In order to overcome the inner-filter effect, the absorbance values of the ligand used were measured and corresponding corrections were made during calculation of binding parameters according to the eq. $(S1)^{S1}$:

$$F_{\rm c} = F_{\rm u} \times 10^{(A \exp \times d \exp \times d \exp)/2}$$
 (eq. S1)

where F_u is the measured emission fluorescence intensity, F_c is the corrected fluorescence intensity that would be measured in the absence of any inner-filter effects, d_{ex} and d_{em} are the cell path lengths in the excitation and emission direction (1 cm), A_{ex} and A_{em} are the absorbance values of the quencher measured at the excitation and peak emission wavelength.

Fluorescence quenching data were processed using the Stern–Volmer eq. (S2):

$$F_0/F = 1 + K_{\rm sv}[Q] = 1 + k_q \tau_0[Q]$$
 (eq. S2)

where F_0 and F are the HSA fluorescence intensities at 340 nm before and after addition of the quencher (Se-3-AP), K_{sv} is the Stern-Volmer quenching constant, k_q stands for the fluorescence quenching rate constant, τ_0 is the average fluorescence lifetime of the fluorophore (7.09 ns for HSA)^{S2} and [Q] is the concentration of the quencher^{S3}. The quenching process was additionally analyzed using a modified Stern–Volmer eq. (S3)^{S3}:

$$F_0/F_0-F = 1/f_a K_a [Q] + 1/f_a$$
 (eq. S3)

where F_0 and F are the HSA fluorescence intensities before and after addition of the quencher at concentration [Q]. K_a represents the effective quenching constant for the accessible fluorophores, and f_a is the fraction of accessible fluorophore.

Thermodynamic parameters of binding, the enthalpy (ΔH) and entropy change (ΔS), during the binding of Se-3-AP to HSA were determined by measuring the binding constants at three temperatures, and following the Van't Hoff eq. (S4):

$$\ln K_a = -\Delta H/RT + \Delta S/R \qquad (eq. S4)$$

where R is the universal gas constant, T is the temperature (in K), and K_a is the effective quenching constant at the corresponding temperature.

The estimations of association (binding) constants (K_b) and number of binding sites (n) of HSA and Se-3-AP were done using eq. (S5)^{S4}:

$$\log(F_0 - F)/F = -n\log(1/([Q] - [P] \times (F_0 - F)/F_0) + n\log K_b$$
 (eq. S5)

where [Q] and [P] are total concentrations of ligand (Se-3-AP) and protein (HSA), respectively.

Figure S1. UV/vis spectrum of Se-3-AP (51 μ M) in DMSO.

Figure S2. Fluorescence spectrum of Se-3-AP (10 mM, $\lambda_{ex} = 360$ nm) in DMSO.

Figure S3.¹H-NMR spectrum of Se-3-AP in DMSO-*d*₆.

Figure S4.¹³C-NMR spectrum of Se-3-AP in DMSO- d_6 .

Figure S5. COSY spectrum of Se-3-AP in DMSO-*d*₆.

Figure S6. 1 H- 13 C HSQC spectrum of Se-3-AP in DMSO- d_{6} .

Figure S7. ¹H-¹³C HMBC spectrum of Se-3-AP in DMSO- d_6 .

Figure S8. ⁷⁷Se-NMR spectrum of Se-3-AP in DMSO-*d*₆.

Figure S9. Cyclic voltammograms of Se-3-AP and 3-APin 0.10 M [*n*-Bu₄N]PF₆/DMSO, GC electrode.

Figure S10. Concentration-response curves and ED_{50} values for Se-3-AP on THP-1 (A) and MCF-7 cells (B) after 24 h treatment. Results are presented as percentages of apoptotic cells determined by means of Annexin V/propidium iodide double staining method for two independent experiments (circles and crosses), with asymmetric five-parameter sigmoidal curve computed for both replicates in GraphPad Prism software.

Figure S11. Changes in distribution of MCF-7 cells within phases of mitotic division induced by 24 h treatment with 3-AP. Analysis has been performed on the same cell samples represented in Figure 2A (right panel) on the remaining cells after Annexin V/PI read out. Incidences of cells found at the G0/G1, S and G2/M phases were determined according to non-treated control population. Results represent percentages of cells within phases of cell cycle obtained from a single experiment considering additional replicates have not been acquired due to 3-AP lack of activity.

Figure S12. Stern-Volmer plot of F_0/Fvs [Q] at three different temperatures, where F_0 and F represent HSA fluorescence intensities in absence (F_0) and in the presence of the quencher (F), and [Q] is the concentration of the quencher (Se-3-AP).

Figure S13. Modified Stern-Volmer plot for binding of Se-3-AP to HSA at three temperatures.

Figure S14. The plot of $\ln K_b vs 1/T$ for the interaction of Se-3-AP with HSA. K_b is given in M⁻¹.

Figure S15. Double-log plot for determination of binding constants K_b , and the number of binding sites *n* at three temperatures; concentration of the quencher [Q] is given in M.

References

- (S1) van de Weert, M.; Stella, L. Fluorescence Quenching and Ligand Binding: A Critical Discussion of a Popular Methodology. *J. Mol. Struct.***2011**, *998* (1), 144–150.
- (S2) Amiri, M.; Jankeje, K.; Albani, J. R. Origin of Fluorescence Lifetimes in Human Serum Albumin. Studies on Native and Denatured Protein. *J. Fluoresc.***2010**, *20* (3), 651–656.
- (S3) J. R. Lakovicz. *Principles of Fluorescence Spectroscopy*, 3rd ed.; Springer US: New York, 2006.
- (S4) Bi, S.; Ding, L.; Tian, Y.; Song, D.; Zhou, X.; Liu, X.; Zhang, H. Investigation of the Interaction between Flavonoids and Human Serum Albumin. J. Mol. Struct. 2004, 703 (1), 37–45.