Supplementary data for article :

Pavic, A.; Glišić, B. D.; Vojnovic, S.; Warżajtis, B.; Savić, N. D.; Antić, M.; Radenković, S.; Janjić, G. V.; Nikodinovic-Runic, J.; Rychlewska, U.; et al. Mononuclear Gold(III)
Complexes with Phenanthroline Ligands as Efficient Inhibitors of Angiogenesis: A
Comparative Study with Auranofin and Sunitinib. *Journal of Inorganic Biochemistry* 2017, *174*, 156–168. <u>https://doi.org/10.1016/j.jinorgbio.2017.06.009</u>

Ms. No. JINORGBIO_2017_213 (revised version)

Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: a comparative study with auranofin and sunitinib

Aleksandar Pavic^{a,*}, Biljana Đ. Glišić^{b,*}, Sandra Vojnovic^a, Beata Warżajtis^c, Nada D. Savić^b, Marija Antić^b, Slavko Radenković^b, Goran V. Janjić^d, Jasmina Nikodinovic-Runic^a, Urszula Rychlewska^c, Miloš I. Djuran^{b,e}

^aInstitute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia

^bUniversity of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, PO Box 60, 34000 Kragujevac, Serbia

^cFaculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań, Poland ^dInstitute of Chemistry, Metallurgy and Technology, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia

^eSerbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia

*Corresponding authors: Tel.: +381 11 397 6034; fax: +381 11 397 5808 (A. Pavic); Tel.: +381 34 300 251; fax: +381 34 335 040 (B. D. Glišić).

E-mail addresses: sasapavic@imgge.bg.ac.rs (A. Pavic); bglisic@kg.ac.rs (B. D. Glišić).

Abstract

Gold(III) complexes with 1.7- and 4.7-phenanthroline ligands, $[AuCl_3(1.7-phen-\kappa N7)]$ (1) and $[AuCl_3(4,7-phen-\kappa N4)]$ (2) were synthesized and structurally characterized by spectroscopic (NMR, IR and UV-vis) and single-crystal X-ray diffraction techniques. In these complexes, 1,7- and 4,7-phenanthrolines are monodentatedly coordinated to the Au(III) ion through the N7 and N4 nitrogen atoms, respectively. In comparison to the clinically relevant anti-angiogenic compounds auranofin and sunitinib, gold(III)phenanthroline complexes showed from 1.5- to 20-fold higher anti-angiogenic potential, and 13- and 118-fold lower toxicity. Among the tested compounds, complex 1 was the most potent and may be an excellent anti-angiogenic drug candidate, since it showed strong anti-angiogenic activity in zebrafish embryos achieving IC₅₀ value (concentration resulting in an anti-angiogenic phenotype at 50% of embryos) of 2.89 µM, while had low toxicity with LC₅₀ value (the concentration inducing the lethal effect of 50% embryos) of 128 µM. Molecular docking study revealed that both complexes and ligands could suppress angiogenesis targeting the multiple major regulators of angiogenesis, such as the vascular endothelial growth factor receptor (VEGFR-2), the matrix metalloproteases (MMP-2 and MMP-9), and thioredoxin reductase (TrxR1), where the complexes showed higher binding affinity in comparison to ligands, and particularly to auranofin, but comparable to sunitinib, an anti-angiogenic drug of clinical relevance.

Keywords: Gold(III) complexes, Phenanthroline, Cytotoxicity, Embryotoxicity, Angiogenesis

TABLE OF CONTENTS

Fig. S1. The structures of mononuclear gold(III) complexes **1** and **2** calculated at S6 the M06-2X(CPCM)/cc-pVTZ+LanL2TZ(f) level of theory.

Fig. S2. Optimized geometries of the chemical species involved in the reaction of S7 $[AuCl_4]^-$ with 1,7-phen in 2 : 1 molar ratio, respectively, calculated at the M06-2X(CPCM)/cc-pVTZ+LanL2TZ(f) level of theory. The reaction pathway is the following: RC^{1,7-phen} (reactant complex) \rightarrow TS^{1,7-phen-1} (transition state 1) \rightarrow IC^{1,7-phen} (intermediate complex) \rightarrow TS^{1,7-phen-2} (transition state 2) \rightarrow PC^{1,7-phen} (product complex).

Fig. S3. Optimized geometries of the chemical species involved in the reaction of S8 [AuCl₄]⁻ with 4,7-phen in 2 : 1 molar ratio, respectively, calculated at the M06-2X(CPCM)/cc-pVTZ+LanL2TZ(f) level of theory. The reaction pathway is the following: $RC^{4,7-phen}$ (reactant complex) $\rightarrow TS^{4,7-phen}$ -1 (transition state 1) $\rightarrow IC^{4,7-phen}$ (intermediate complex) $\rightarrow TS^{4,7-phen}$ -2 (transition state 2) $\rightarrow PC^{4,7-phen}$ (product complex).

Fig. S4. Energy diagram of the reactions of [AuCl4]⁻ with 1,7-phen (A) and 4,7- S9 phen (B) in 2 : 1 molar ratio, respectively. Relative free energies (M06-2X(CPCM)/cc-pVTZ+LanL2TZ(f)) were computed with respect to the corresponding reactant complex. For more details see Figs. S2 and S3.

Fig. S5. The anti-angiogenic phenotype of zebrafish embryos defined as effect of S10 different concentrations of gold(III)-phenanthroline complexes **1** and **2**, the respective 1,7-and 4,7-phen ligands and K[AuCl₄] on the ISVs development. 1.25 μ M auranofin and sunitinib were used as positive controls.

Fig. S6. The inhibition of ISVs and SIVs angiogenesis upon treatments with S11 different concentrations of gold(III)-phenanthroline complexes 1 and 2, the

S3

respective 1,7- and 4,7-phen ligands and K[AuCl₄] on the ISVs development. 1.25 μ M auranofin and sunitinib were used as positive controls.

Fig. S7. The effect of different concentrations of gold(III)-phenanthroline S12 complexes **1** and **2**, the respective 1,7- and 4,7-phen ligands and K[AuCl₄] on the heart beating rate of zebrafish embryos (n = 30). Auranofin and sunitinib applied in the concentration of 1.25 µM were used as positive controls.

Fig. S8. Therapeutic window (TW) of gold(III)-phenanthroline complexes **1** and **2**, S13 the respective 1,7- and 4,7-phen ligands, K[AuCl₄], auranofin and sunitinib assessed as the ratio of LC_{50} and IC_{50} . Respective TW values are presented above each of tested compounds.

Fig. S9. The binding of gold(III) complexes **1** and **2**, 1,7- and 4,7-phen, auranofin S14 and sunitinib in the active site of VEGFR-2 protein as assessed by molecular docking.

Fig. S10. The binding of gold(III) complexes **1** and **2**, 1,7- and 4,7-phen, auranofin S15 and sunitinib in the active site of MMP-2 protein as assessed by molecular docking.

Fig. S11. The binding of gold(III) complexes **1** and **2**, 1,7- and 4,7-phen, auranofin S16 and sunitinib in the active site of MMP-9 protein as assessed by molecular docking.

Fig. S12. The binding of gold(III) complexes **1** and **2**, 1,7- and 4,7-phen, auranofin S17 and sunitinib in the active site of the protein thioredoxin reductase 1 (TrxR1) as assessed by molecular docking.

Fig. S13. Interactions of gold(III) complexes **1** and **2**, 1,7- and 4,7-phen, auranofin S18-20 and sunitinib with VEGFR-2 protein during molecular docking.

Fig. S14. Interactions of gold(III) complexes 1 and 2, 1,7- and 4,7-phen, auranofin S21-23

and sunitinib with MMP-2 protein during molecular docking.

Fig. S15. Interactions of gold(III) complexes **1** and **2**, 1,7- and 4,7-phen, auranofin S24-26 and sunitinib with MMP-9 protein during molecular docking.

Fig. S16. Interactions of gold(III) complexes **1** and **2**, 1,7- and 4,7-phen, auranofin S27-28 and sunitinib with selenocysteine residue of TrxR1 protein during molecular docking.

Table S1	S29
Crystal data for 1 and 2 .	
Table S2	S 30
Lethal and teratogenic effects observed in zebrafish (Danio rerio) embryos at	
different hours post fertilization (hpf).	
Table S3	S 31
Selected bond distances (Å) and valence angles (°) of the gold(III) complexes 1	
and 2 .	
Table S4	S32
Geometrical parameters describing intermolecular interactions in the crystals of 1	
and $2^{a,b}$.	
Table S5	S33
Crucial interatomic distances (Å) in the structures involved in the mechanism of	
the reaction of [AuCl ₄] ⁻ with 1,7- and 4,7-phen calculated at the M06-2X/cc-	
PVTZ+LanL2TZ(f) level of theory.	
Table S6	S34

Evaluation of anti-angiogenic potential of gold(III) complexes in comparison to 1,7- and 4,7-phenanthroline, K[AuCl₄] and clinically used drugs auranofin and sunitinib.

Supplementary Information

Fig. S1. The structures of mononuclear gold(III) complexes **1** and **2** calculated at the M06-2X(CPCM)/cc-pVTZ+LanL2TZ(f) level of theory.

Fig. S2. Optimized geometries of the chemical species involved in the reaction of [AuCl4]⁻ with 1,7-phen in 2 : 1 molar ratio, respectively, calculated at the M06-2X(CPCM)/cc-pVTZ+LanL2TZ(f) level of theory. The reaction pathway is the following: $RC^{1,7-phen}$ (reactant complex) \rightarrow TS^{1,7-phen}-1 (transition state 1) \rightarrow IC^{1,7-phen} (intermediate complex) \rightarrow TS^{1,7-phen}-2 (transition state 2) \rightarrow PC^{1,7-phen} (product complex).

Fig. S3. Optimized geometries of the chemical species involved in the reaction of [AuCl4]⁻ with 4,7-phen in 2 : 1 molar ratio, respectively, calculated at the M06-2X(CPCM)/cc-pVTZ+LanL2TZ(f) level of theory. The reaction pathway is the following: $RC^{4,7-phen}$ (reactant complex) \rightarrow TS^{4,7-phen}-1 (transition state 1) \rightarrow IC^{4,7-phen} (intermediate complex) \rightarrow TS^{4,7-phen}-2 (transition state 2) \rightarrow PC^{4,7-phen} (product complex).

Fig. S4. Energy diagram of the reactions of $[AuCl_4]^-$ with 1,7-phen (A) and 4,7-phen (B) in 2 : 1 molar ratio, respectively. Relative free energies (M06-2X(CPCM)/ccpVTZ+LanL2TZ(f)) were computed with respect to the corresponding reactant complex. For more details see Figs. S2 and S3.

Fig. S5. The anti-angiogenic phenotype of zebrafish embryos defined as effect of different concentrations of gold(III)-phenanthroline complexes 1 and 2, the respective 1,7-and 4,7-phen ligands and K[AuCl₄] on the ISVs development. 1.25 μ M auranofin and sunitinib were used as positive controls.

Fig. S6. The inhibition of ISVs and SIVs angiogenesis upon treatments with different concentrations of gold(III)-phenanthroline complexes 1 and 2, the respective 1,7- and 4,7- phen ligands and K[AuCl₄] on the ISVs development. 1.25 μ M auranofin and sunitinib were used as positive controls.

Fig. S7. The effect of different concentrations of gold(III)-phenanthroline complexes 1 and 2, the respective 1,7- and 4,7-phen ligands and K[AuCl₄] on the heart beating rate of zebrafish embryos (n = 30). Auranofin and sunitinib applied in the concentration of 1.25 μ M were used as positive controls.

Fig. S8. Therapeutic window (TW) of gold(III)-phenanthroline complexes 1 and 2, the respective 1,7- and 4,7-phen ligands, K[AuCl₄], auranofin and sunitinib assessed as the ratio of LC_{50} and IC_{50} . Respective TW values are presented above each of tested compounds.

Supplementary Information

Fig. S9. The binding of gold(III) complexes **1** and **2**, 1,7- and 4,7-phen, auranofin and sunitinib in the active site of VEGFR-2 protein as assessed by molecular docking.

Fig. S10. The binding of gold(III) complexes **1** and **2**, 1,7- and 4,7-phen, auranofin and sunitinib in the active site of MMP-2 protein as assessed by molecular docking.

Fig. S11. The binding of gold(III) complexes **1** and **2**, 1,7- and 4,7-phen, auranofin and sunitinib in the active site of MMP-9 protein as assessed by molecular docking.

Fig. S12. The binding of gold(III) complexes **1** and **2**, 1,7- and 4,7-phen, auranofin and sunitinib in the active site of the protein thioredoxin reductase 1 (TrxR1) as assessed by molecular docking.

Fig. S13. Interactions of gold(III) complexes **1** and **2**, 1,7- and 4,7-phen, auranofin and sunitinib with VEGFR-2 protein during molecular docking.

1,7- phen

Fig. S14. Interactions of gold(III) complexes **1** and **2**, 1,7- and 4,7-phen, auranofin and sunitinib with MMP-2 protein during molecular docking.

2

1,7- phen

4,7- phen

Fig. S15. Interactions of gold(III) complexes **1** and **2**, 1,7- and 4,7-phen, auranofin and sunitinib with MMP-9 protein during molecular docking.

Fig. S16. Interactions of gold(III) complexes **1** and **2**, 1,7- and 4,7-phen, auranofin and sunitinib with selenocysteine residue of TrxR1 protein during molecular docking.

Crystal data for 1 and 2.

For all structures: $C_{12}H_8AuCl_3N_2$, $M_r = 483.52$. Experiments were carried out at 295 K

with Mo Ka radiation. H-atom parameters were constrained.

	1	2
Crystal data		
Crystal system, space group	Monoclinic, $P2_1/c$	Triclinic, P 1
<i>a</i> , <i>b</i> , <i>c</i> (Å)	12.1848(3), 14.1996(3), 7.7110(2)	7.8420(12), 8.8631(14), 10.7500(5)
α, β, γ (°)	90, 95.833(2), 90	78.707(8), 87.300(8), 66.988(15)
$V(Å^3)$	1327.24(6)	674.04(17)
Ζ	4	2
D_x (Mg m ⁻³)	2.420	2.382
μ (mm ⁻¹)	11.67	11.49
Crystal size (mm)	0.18 imes 0.05 imes 0.03	0.18 imes 0.05 imes 0.03
Data collection		
Absorption correction	Analytical	Multi-scan
T_{\min}, T_{\max}	0.093, 0.780	0.903, 1.000
No. of measured, independent and	18485, 2336, 2126	4091, 4091, 3247
observed $[I > 2\sigma(I)]$ reflections		
R _{int}	0.041	
$(\sin \theta/\lambda)_{\text{max}}$ (Å ⁻¹)	0.595	0.596
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.019, 0.044, 1.08	0.036, 0.083, 0.93
No. of reflections	2336	4091
No. of parameters	163	164
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å ⁻³)	0.83, -0.56	1.08, -0.87
Percent Filled Space (K.P.I.) (%) ^a	69.2	67.9

^aFor definition see: A.I. Kitajgorodskij, *Molecular Crystals and Molecules*, New-York, Academic Press, 1973.

Lethal and teratogenic effects observed in zebrafish (Danio rerio) embryos at different

Category	Developmental endpoints	Exposure time (hpf)			
		24	48	72	96/114
Lethal effect	Egg coagulation ^a	•	•	•	•
	No somite formation	•	•	•	•
	Tail not detached	•	•	•	•
	No heartbeat		•	•	•
Teratogenic effect	Malformation of head	•	•	•	•
-	Malformation of eyes ^b	•	•	•	•
	Malformation of sacculi/otoliths ^c	•	•	•	•
	Malformation of chorda	•	•	•	•
	Malformation of tail ^d	•	•	•	•
	Scoliosis	•	•	•	•
	Heartbeat frequency		•	•	•
	Blood circulation		•	•	•
	Pericardial edema	•	•	•	•
	Yolk edema	•	•	•	•
	Yolk absosrption	•	•	•	•
	Growth retardation ^e	•	•	•	•

hours post fertilization (hpf).

^aNo clear organs structure is recognized.

^bMalformation of eyes was recorded for the retardation in eye development and abnormality in shape and size.

^cPresence of no, one or more than two otoliths per sacculus, as well as reduction and enlargement of otoliths and/or sacculi (otic vesicles).

^dTail malformation was recorded when the tail was bent, twisted or shorter than to control embryos as assessed by optical comparation.

^eGrowth retardation was recorded by comparing with the control embryos in development or size (before hatching, at 24 and 48 hpf) or in a body length (after hatching, at and onwards 72 hpf) using by optical comparation using an inverted microscope (CKX41; Olympus, Tokyo, Japan).

		4			
		1	2		
	X-ray	DFT-calculated	X-ray	DFT-calculated	
Au—N ^a	2.049(3)	2.0477	2.066(7)	2.0490	
Au—Cl1	2.2858(10)	2.3007	2.284(3)	2.3005	
Au—Cl2	2.2643(10)	2.2789	2.273(2)	2.2788	
Au—Cl3	2.2701(12)	2.2993	2.273(3)	2.2997	
N—Au—Cl1	89.64(9)	89.0716	89.5(2)	89.1026	
N—Au—Cl2	178.07(10)	178.6975	179.9(3)	178.4938	
N—Au—Cl3	88.90(9)	88.7922	88.9(2)	88.7689	
Cl1—Au—Cl2	90.29(4)	91.1128	90.58(11)	91.0814	
Cl1—Au—Cl3	178.49(4)	177.8293	176.79(11)	177.8456	
Cl2—Au—Cl3	91.16(4)	91.0316	91.04(11)	91.0551	
Au—N—C6a	121.0(2)	121.8445			
Au—N—C8	118.4(3)	116.9398			
Au—N—C4a			122.2(6)	122.0368	
Au—N—C3			116.1(6)	116.5949	

Selected bond distances (Å) and valence angles (°) of the gold(III) complexes 1 and 2.

^aN7 for the complex **1** and N4 for the complex **2**.

	D–H [Å]	D…A [Å]	H…A [Å]	D-H…A [°]	Symmetry operations on A
1					
C2−H2…N1	0.93	3.632(5)	2.79	151	<i>-x</i> +1, <i>-y</i> +2, <i>-z</i> +1
C3–H3…Cl1	0.93	3.753(5)	2.87	158	- <i>x</i> +1,+ <i>y</i> +1/2,- <i>z</i> +1/2+1
C4–H4····Cl3	0.93	3.832(4)	2.92	166	<i>-x</i> +1, <i>-y</i> +1, <i>-z</i> +1
C8–H8····Cl1	0.93	3.705(4)	2.87	150	<i>-x,-y</i> +1, <i>-z</i> +1
C9–H9····Cl1	0.93	3.600(4)	2.96	127	<i>x</i> ,- <i>y</i> +1/2+1,+ <i>z</i> -1/2
C9–H9…Cl2	0.93	3.701(4)	2.93	141	-x, +y+1/2, -z+1/2
2					
$C2-H2\cdots N7$	0.93	3.398(13)	2.48	171	<i>x</i> +1,+ <i>y</i> -1,+ <i>z</i>
C9–H9…Cl1	0.93	3.713(12)	2.87	151	- <i>x</i> ,- <i>y</i> +1,- <i>z</i>
C9–H9…Cl3	0.93	3.544(11)	2.88	129	<i>-x</i> +1, <i>-y</i> +1, <i>-z</i>
C8–H8…Cl2	0.93	3.820(10)	2.92	164	<i>x</i> -1,+ <i>y</i> +1,+ <i>z</i> -1
C5–H5…Cl3	0.93	3.573(12)	2.84	137	<i>-x</i> +1, <i>-y</i> +1, <i>-z</i> +1
C3–H3···Cl1	0.93	3.713(9)	2.83	160	<i>-x</i> +1, <i>-y</i> , <i>-z</i> +1
C1–H1····Cl2	0.93	3.778(11)	2.88	163	<i>x</i> , + <i>y</i> , + <i>z</i> - <i>1</i>
Cl···Cl	X…X [Å]	d [Å]	$\theta_1 / \theta_2 [^\circ]$	type	Symmetry
1	C11C13	3 4374(16)	149 30(6) /	T	r + y + z + 1
1		5.4574(10)	149.01(7)	1	λ , $ y$, $ z$, $ 1$
	Cl1…Au1	3.4074(11)			<i>-x,-y</i> +1, <i>-z</i> +1
2	Cl1···Cl3	3.534(4)	150.35(14)/	Ι	x - 1, +y, +z
			152.35(15)		
	Cl1…Au1	3.786(3)			- <i>x</i> +1,- <i>y</i> ,- <i>z</i> +1
Off-Face		h [Å]	r [Å]	6 [°]	Symmetry
stacking		[]	- []	- []	operations
1		3.887	0.404	14	<i>x</i> ,- <i>y</i> + <i>1</i> /2+ <i>1</i> ,+ <i>z</i> - <i>1</i> /2
2		3.486	1.613	0	-x, -y+1, -z

Geometrical parameters describing intermolecular interactions in the crystals of 1 and $2^{a,b}$.

^aFor description of parameters describing the halogen bonds see G.R. Desiraju, R. Parthasarathy, J. Am. Chem. Soc. 111 (1989) 8725-8726; A. Mukherjee, S. Tothadi, G.R. Desiraju, Acc. Chem. Res. 47 (2014) 2514-2524.

^bFor description of parameters describing stacking interactions see M. L. Główka, D. Martynowski, K. Kozłowska, J. Mol. Struct. 474 (1999) 81-89.

Crucial interatomic distances (Å) in the structures involved in the mechanism of the reaction of [AuCl₄]⁻ with 1,7- and 4,7-phen calculated at the

	Au1—N7	Au1—Cl1	Au1—Cl2	Au1—Cl3	Au1—Cl7	Au2—N1	Au2—Cl4	Au2—Cl5	Au2—Cl6	Au2—Cl8
RC ^{1,7-phen}	2.9590	2.3100	2.3106	2.3088	2.3085	3.2725	2.3063	2.3080	2.3061	2.3055
TS ^{1,7-phen} -1	2.3957	2.3005	2.3278	2.2963	2.6415	3.1989	2.3048	2.3081	2.3067	2.3042
IC ^{1,7-phen}	2.0507	2.3053	2.2929	2.3081	3.2298	3.4059	2.3037	2.3048	2.3085	2.3028
TS ^{1,7-phen} -2	2.0549	2.3051	2.2878	2.3082	3.2150	2.4048	2.2980	2.3069	2.2961	2.7140
PC ^{1,7-phen}	2.0637	2.3078	2.2862	2.3057	3.1860	2.0838	2.3062	2.2788	2.3079	3.2069
	Au1—N4	Au1—Cl1	Au1—Cl2	Au1—Cl3	Au1—Cl7	Au2—N7	Au2—Cl4	Au2—Cl5	Au2—Cl6	Au2—Cl8
RC ^{4,7-phen}	2.9611	2.3111	2.3091	2.3113	2.3088	2.9622	2.3113	2.3091	2.3112	2.3089
TS ^{4,7-phen} -1	2.4037	2.2994	2.3253	2.2955	2.6426	2.9530	2.3097	2.3089	2.3088	2.3084
IC ^{4,7-phen}	2.0538	2.3068	2.2884	2.3062	3.2286	2.9503	2.3092	2.3098	2.3084	2.3083
TS ^{4,7-phen} -2	2.0574	2.3057	2.2871	2.3076	3.1974	2.3957	2.2952	2.3173	2.3000	2.6631
PC ^{4,7-phen}	2.0628	2.3044	2.2846	2.3079	3.1876	2.0627	2.3046	2.2846	2.3076	3.1877

M06-2X/cc-PVTZ+LanL2TZ(f) level of theory.

Evaluation of anti-angiogenic potential of gold(III) complexes in comparison to 1,7- and

	Affected	ISVs (number)			Inhibition (%)		
Compound	embryos (%) ^a	Intact	Defective	Absent	ISVs	SIVs	
DMF (0.035%)	3.3 ± 0.6	28.4 ± 0.7	0.5 ± 0.7	0.0 ± 0.0	0.3 ± 1.1	0.1 ± 0.03	
[AuCl ₃ (1,7-phen-	-кN7)] (1)						
20 µM	100.0 ± 0.0	0.3 ± 0.5	13.5 ± 1.2	14.2 ± 0.9	77.3 ± 1.1	100 ± 0.0	
10 µM	100.0 ± 0.0	5.2 ± 1.1	19.0 ± 1.6	3.8 ± 0.8	51.9 ± 2.7	80.2 ± 0.3	
5 μΜ	63.3 ± 5.1	17.3 ± 0.8	9.0 ± 0.7	1.9 ± 0.6	45.8 ± 3.6	74.2 ± 1.0	
2.5 μM	50.0 ± 3.3	20.7 ± 1.3	5.3 ± 1.1	2.1 ± 0.9	39.4 ± 1.9	58.5 ± 1.8	
1,7-phen							
20 µM	96.7 ± 4.3	17.7 ± 1.6	8.4 ± 0.8	1.9 ± 1.6	47.8 ± 1.1	55.3 ± 1.9	
10 µM	56.7 ± 1.9	20.1 ± 0.9	6.1 ± 01	2.0 ± 0.7	32.8 ± 1.8	44.5 ± 3.0	
5 μΜ	10.0 ± 2.1	25.1 ± 0.7	1.9 ± 0.7	1.0 ± 0.7	25.4 ± 2.0	29.6 ± 3.8	
2.5 μM	3.3 ± 0.6	28.0 ± 0.1	0.0 ± 0.0	0.1 ± 0.3	13.1 ± 1.2	13.0 ± 0.6	
[AuCl ₃ (4,7-phen-	-кN4)] (2)						
20 µM	100.0 ± 0.0	9.0 ± 1.1	10.7 ± 1.3	8.3 ± 1.6	64.3 ± 0.8	86.3 ± 0.1	
10 µM	90.0 ± 0.0	14.4 ± 1.3	11.5 ± 1.2	2.3 ± 0.8	52.1 ± 0.3	76.8 ± 0.4	
5 μΜ	46.7 ± 2.1	21.2 ± 2.5	7.2 ± 0.8	0.3 ± 0.5	41.3 ± 4.1	49.3 ± 0.1	
2.5 μM	20.0 ± 2.7	24.0 ± 0.9	4.1 ± 1.1	0.1 ± 0.3	33.4 ± 1.6	37.4 ± 0.8	
4,7-phen							
20 µM	76.7 ± 4.2	15.2 ± 0.6	10.9 ± 0.7	1.9 ± 1.1	32.6 ± 0.8	51.3 ± 0.5	
10 µM	43.3 ± 1.7	16.8 ± 1.2	9.1 ± 1.1	2.2 ± 0.8	20.7 ± 2.1	36.6 ± 0.7	
5 μΜ	6.7 ± 1.2	27.5 ± 0.9	0.5 ± 0.2	0.0 ± 0.0	18.2 ± 3.0	33.0 ± 0.1	
2.5 μΜ	0.0 ± 0.0	28.3 ± 0.5	0.0 ± 0.0	0.0 ± 0.0	8.8 ± 0.4	5.8 ± 1.0	
K[AuCl4]							
20 µM	$30. \pm 5.8$	25.6 ± 1.1	2.4 ± 1.1	0.0 ± 0.0	6.7 ± 0.6	2.7 ± 0.5	
Auranofin							
1.25 μM	100.0 ± 0.0	13.0 ± 1.1	13.6 ± 0.7	1.6 ± 1.1	31.8 ± 1.7	58.0 ± 0.3	
Sunitinib							
1.25 μM	100.0 ± 0.0	7.9 ± 1.2	$17.7 \pm$	2.4 ± 0.5	32.9 ± 4.1	59.0 ± 0.4	

4,7-phenanthroline, K[AuCl₄] and clinically used drugs auranofin and sunitinib.

^aThe percentage of zebrafish embryos displaying anti-angiogenic phenotype.