Supplementary data for the article:

Poljarević, J. M.; Tamás Gál, G.; May, N. V.; Spengler, G.; Dömötör, O.; Savić, A. R.; Grgurić-Šipka, S.; Enyedy, É. A. Comparative Solution Equilibrium and Structural Studies of Half-Sandwich Ruthenium(II)(η 6 -Toluene) Complexes of Picolinate Derivatives. *J. Inorg. Biochem.* **2018**, *181*, 74–85. <u>https://doi.org/10.1016/j.jinorgbio.2017.12.017</u>

SUPPLEMENTARY INFORMATION

Comparative solution equilibrium and structural studies of half-sandwich ruthenium(II)(η^6 -toluene) complexes of picolinate derivatives

Jelena M. Poljarević, G. Tamás Gál, Nóra V. May, Gabriella Spengler, Orsolya Dömötör, Aleksandar R. Savić, Sanja Grgurić-Šipka, Éva A. Enyedy*

Chart S1. Chemical structures of the ligands in their completely deprotonated forms with numbering of the ring protons.

Chart S2. Complexation and co-ligand exchange equilibrium processes for the $[Ru(\eta^6-toluene (L)(H_2O)]^+$ species.

Figure S1. ESI-MS spectra of complexes 1-5 with the theoretical values.

Figure S2. ¹H NMR spectra of complex **1** and ligand picH in DMSO-d₆ (solvent peaks: #).

Figure S3. Packing arrangement showing the system of the hydrogen bonds in crystal **1**. Details of hydrogen bond parameters are collected in Table S2.

Figure S4. Packing arrangement showing the system of the hydrogen bonds in crystal $2 \cdot H_2O$. Details of hydrogen bond parameters are collected in Table S2.

Figure S5. Packing arrangement showing the system of the hydrogen bonds in crystal **3**. Details of hydrogen bond parameters are collected in Table S2.

Figure S6. Packing arrangement showing the system of the hydrogen bonds in crystal **4**. Details of hydrogen bond parameters are collected in Table S2.

Figure S7. UV-vis spectra of 5-Br-picH recorded at various pH values (a), calculated individual absorption spectra of ligand species (b). { $c_{5-Br-pic} = 115 \ \mu M$; pH = 2 - 11.5; $T = 25 \ ^{\circ}C$; $I = 0.20 \ M$ (*KCl*); $\ell = 1.0 \ cm$ }

Figure S8. ¹H NMR spectra of $[Ru(\eta^6-toluene)(Z)_3]$ ($Z = C\Gamma/H_2O$) in aqueous solution in the presence of 0.20 M chloride ion at the indicated pH values in the regions of the toluene CH protons (left side) and the CH₃ protons (right side). Identified species: **a**: $[Ru(\eta^6-toluene)(H_2O)_2Cl]^+$ (= M); **b**: $[(Ru(\eta^6-toluene))_2(\mu^2-OH)_2Cl]^+$ (= $[M_2(OH)_2]$); **c**: $[(Ru(\eta^6-toluene))_2(\mu^2-OH)_3]^+$ (= $[M_2(OH)_3]$); #: solvent peak. { $c_{Ru} = 1 \text{ mM}$; T = 25 °C; I = 0.20 M (KCl); D_2O ; $pH = pD \times 0.93 + 0.40$ [55]}

Figure S9. Concentration distribution curves for $[Ru(\eta^6-toluene)(Z)_3]$ (where $Z = H_2O/Cl^-$) in aqueous solution in the presence of 0.20 M chloride ions in the pH range from 2 up to 10 together with the ¹H NMR peak integrals for the CH₃ toluene protons of M, $[M_2(OH)_2]$ and $[M_2(OH)_3]$ species identified based on Fig. S8. { $c_{Ru} = 1 \text{ mM}$; T = 25 °C; I = 0.20 M (KCl)}

Figure S10. Time-dependence of UV-vis absorption spectra recorded for the $[Ru(\eta^6-toluene)(H_2O)_3]^{2+}$ - picH (1:1) system at pH = 2.79 in the presence of chloride ions. The inset shows the absorbance changes at 310 nm. { $c_{Ru} = c_L = 102 \ \mu M$; $T = 25 \ ^\circ C$; $I = 0.20 \ M \ (KCl)$; $\ell = 1.0 \ cm$ }

Figure S11. Absorbance values at 310 nm recorded for the $[Ru(\eta^6-toluene)(H_2O)_3]^{2+} - picH$ (1:1) system after 1 h, 24 h and 48 h waiting time in the presence of chloride ions at pH = 0.85 -2.79 using individual samples. { $c_{Ru} = c_L = 102 \ \mu M$; $T = 25 \ ^\circ C$; $I = 0.20 \ M \ (KCl)$; $\ell = 1.0 \ cm$ }

Figure S12. Time-dependence of absorbance values at 308 nm recorded for the $[Ru(\eta^6-toluene)(H_2O)_3]^{2+} - 3$ -Me-picH (1:1) system at pH = 1.92 (×) and at 0.86 (▲) in the presence of chloride ions with the fitted kinetic curves (dashed lines). { $c_{Ru} = c_L = 123 \ \mu M$; $T = 25 \ ^\circ C$; $I = 0.20 \ M$ (KCl); $\ell = 1.0 \ cm$ }

Figure S13. UV-vis spectra recorded for the water/chlorido exchange process in the complex **1** at pH = 5.50. Inset shows measured (–) and fitted absorbance values (dashed line) at 308 nm and at various chloride ion concentrations. { $c_{Ru} = c_L = 0.08 \text{ mM}$; $c_{Cl} = 0-270 \text{ mM}$; T = 25 °C}

Figure S14. Absorbance values recorded at 320 nm for the water/chlorido exchange process in the complex **2** at pH = 6.70 at variable ionic strength (**■**) and at a constant ionic strength of 0.30 M NaClO₄/NaCl (**▲**) (a). Calculated molar absorbance spectra for the aqua (solid lines) and chlorido (dashed lines) complexes at variable (red) and constant ionic strength (black) (b). { $c_{Ru} = c_L = 0.08 \text{ mM}$; $c_{Cl^-} = 0$ -300 mM; T = 25 °C}

Figure S15. ¹H NMR spectra of **1**, HSA and HSA:**1** systems in PBS' buffer at pH 7.4 in the regions of the ligand and toluene CH protons (a) and the CH₃ toluene protons (b). { $c_1 = 1.0 \text{ or } 0.5 \text{ mM}$; $c_{HSA} = 0.5 \text{ mM}$; $T = 25 \degree C$; 10% D_2O , incubation time: 24 h}

Figure S16. UV-vis spectra recorded for the LMM fractions of the ultrafiltered samples of HSA–1 (dashed lines) with the corresponding reference spectra of samples containing 1 (solid lines). {*Original sample composition: HSA: 40 \muM, or 0 M for the references; 1: 366 \muM (blue); 203 \muM (red); 40 \muM (black); T = 25 °C; pH = 7.4 in PBS'; incubation time: 24 h}*

Figure S17. ¹H NMR spectra of N-MeIm, the $[Ru(\eta^6-toluene)Cl(\mu-Cl)]_2 - N-MeIm (1:1)$ system and the precursor alone at pH 7.4 in PBS'. The framed details of spectra with dashed line indicate peaks belonging to the Ru(η^6 -toluene) complexes formed with N-MeIm .{c = 1 mM; T = 25 °C; 10% D_2O ; *: DSS peaks; #: solvent peaks}

Figure S18. ¹H NMR spectra of N-MeIm, the **1** – N-MeIm (1:1) system and **1** alone at pH 7.4 in PBS'. The framed details of spectra with dashed line indicate peaks belonging to the unbound N-MeIm and were used for the calculation of the integrals. {c = 1 mM; T = 25 °C; 10% D_2O ; *: DSS peaks; #: solvent peaks}

Compound	1	2 •H₂O	3	5
Color/shape	Orange/Prism	Yellow/Prism	Yellow/Prism	Yellow/Prism
Empirical formula	C ₁₃ H ₁₂ ClNO ₂ Ru	C ₁₄ H ₁₆ ClNO ₃ Ru	$C_{13}H_{11}CINO_2Ru$	C ₁₄ H ₁₂ ClNO ₄ Ru
Moiety formula	$[\mathbf{Ru}(\mathbf{C}_{13}\mathbf{H}_{12}\mathbf{NO}_2)(\mathbf{Cl})]$	$[Ru(C_{14}H_{14}NO_2)(Cl)]\cdot H_2O$	$[\mathbf{Ru}(\mathbf{C}_{13}\mathbf{H}_{11}\mathbf{NO}_2)(\mathbf{Cl})]$	[Ru(C ₁₄ H ₁₂ NO ₄)(Cl)]
Formula weight (g/mol)	350.76	382.80	429.66	394.77
Temperature (K)	103(2)	103(2)	293(2)	293(2)
Radiation and wavelength λ	Μο-Κα, 0.71075	Μο-Κα, 0.71075	Μο-Κα, 0.71075	Μο-Κα, 0.71075
Crystal system	monoclinic	monoclinic	triclinic	triclinic
Space group	$P 2_1/n$	<i>P</i> 2 ₁	<i>P</i> -1	<i>P</i> -1
Unit cell dimensions				
a (Å)	8.2995(3)	6.1442(6)	7.616(3)	7.6948(14)
b (Å)	14.9714(5)	13.7320(14)	7.754(4)	9.6578(19)
c (Å)	10.0795(4)	8.3347(10)	12.938(6)	11.251(2)
α (°)	90	90	81.590(10)	98.060(7)
β (°)	94.1300(10)	91.468(3)	86.380(18)	106.159(7)
γ (°)	90	90	61.66(4)	109.866(8)
Volume ($Å^3$)	1973.30(13)	702.99(13)	665.2(6)	729.3(2)
Z/Z'	4/1	2/1	2/1	2/1
Density (calc.) (Mgm ⁻³)	1.865	1.808	2.145	1.798
Absorption coefficient, μ (mm ⁻	1.460	1.310	4.377	1.271
<i>F</i> (000)	696	384	416	392
Crystal size (mm)	0.50 x 0.25 x 0.25	0.50 x 0.10 x 0.10	0.50 x 0.10 x 0.05	0.25 x 0.10 x 0.05
Absorption correction	numerical	numerical	numerical	numerical
Min. and max. transmission	0.5596 and 0.7490	0.6975 and 0.9496	0.5635 and 0.8517	0.861 and 0.962
θ -range for data collection (°)	$3.073 \le \theta \le 27.448$	$3.317 \le \theta \le 25.331$	$3.011 \le \theta \le 26.372$	$2.977 \le \theta \le 27.420$
Index ranges	$-10 \le h \le 10; -19 \le k \le 19; -13 \le 10$	$-7 \le h \le 7; -16 \le k \le 16; -10 \le$	-9 ≤ <i>h</i> ≤ 9;-9≤ <i>k</i> ≤9;-16 ≤ <i>l</i> ≤	$-9 \le h \le 9; -12 \le k \le 12; -14 \le l$
Reflections collected	46142	10100	5157	6875

Table S1	Crystal	data and	structure	refinement	for com	plexes 1-3 a	and 5
Table 51.	Crystar	uata ana	suucture	rennement	tor com	pienes 1-5 c	inu o

Completeness to 20	0.999	0.998	0.990	0.997
Independent reflections (R _{int})	2849 (0.0332)	2564 (0.0838)	2671 (0.1239)	3290 (0.0960)
Reflections $I > 2\sigma(I)$	2817	2355	1654	1927
Refinement method	full-matrix least-squares on	full-matrix least-squares on	full-matrix least-squares on	full-matrix least-squares on
Data / restraints / parameters	2849 /0 /164	2564 /4 /190	2671 /0 /173	3290 /0 /192
Goodness-of-fit on F^2	1.255	1.071	1.084	1.039
Final <i>R</i> indices $[I \ge 2\sigma(I)] R_1$,	0.0214, 0.0583	0.0442, 0.0810	0.0985, 0.2456	0.0939, 0.1435
R indices (all data) R_1 , wR_2	0.0217, 0.0585	0.0503, 0.0852	0.1373, 0.3049	0.1685, 0.1678
Max. and mean shift/esd	0.000;0.000	0.000;0.000	0.000;0.000	0.000;0.000
Largest diff. peak and hole	0.994;-0.425	0.851;-0.931	2.057;-2.337	1.264;-0.876

D-HA	DH (Å)	HA (Å)	DA (Å)	D-HA (°)
1				
O6-H6Cl1 ⁱ	0.95	2.69	3.557(2)	153
C9-H9O2 ⁱⁱ	0.95	2.42	3.196(2)	138
C12-H12O1 ⁱⁱⁱ	0.95	2.38	3.022(2)	124
$2 \cdot H_2O$				
O3-H3vCl1 ^{iv}	0.84(6)	2.35(7)	3.182(10)	169(17)
O3-H3wO1 ^v	0.84(6)	2.40(10)	3.047(12)	134(9)
O3-H3wO2 ^v	0.84(6)	2.29(5)	3.120(12)	169(10)
C2-H2O2 ^{vi}	0.95	2.31	3.246(17)	168
C5-H5O1 ^{vii}	0.95	2.37	3.318(12)	179
C6-H6O3 ^{viii}	0.95	2.48	3.244(14)	138
C12-H12Cl1 ^{vii}	0.95	2.79	3.671(10)	155
3				
C5-H5O2 ^{ix}	0.93	2.47	3.11(2)	125
C7-H7cO1 (intra)	0.96	2.46	3.092(18)	124
C8-H8O2 ^{ix}	0.93	2.33	3.26(2)	177
5				
O3-H3O3O2 ^x	0.82	1.76	2.570(10)	169
C3-H3O4 ^{xi}	0.93	2.51	3.183(14)	130
C5-H5Cl1 ^{vii}	0.93	2.83	3.466(15)	127
C12-H12O3 (intra)	0.93	2.39	2.723(13)	101

 Table S2. Intermolecular interactions in the crystal structures of complexes 1-3 and 5.

Symmetry codes: $^{i}1/2+x, 1/2-y, 1/2+z, ^{ii}1-x, 1-y, -z, ^{iii}-1/2+x, 1/2-y, 1/2+z, ^{iv}1-x, 1/2+y, 1-z, ^{v}x, y, -1+z, ^{vi}1-x, -1/2+y, 2-z, ^{vii}1+x, y, z, ^{viii}1+x, y, 1+z, ^{ix}-1+x, y, z, ^{x}x, 1+y, z, ^{xi}2-x, 1-y, -z$

Table S3. *In vitro* antiproliferative and cytotoxic effects: IC_{50} values in μM in two human cancer cell lines (sensitive and multidrug resistant) and normal embryonic lung fibroblasts presented for the complexes **1-5**, the corresponding free ligands, the precursor $[Ru(\eta^6-toluene)Cl(\mu-Cl)]_2$ and cisplatin as well as the for comparison.

	Antiproliferative effect (µM)		Cytotoxic effect (µM)		
	Colo 205	Colo 320	Colo 205	Colo 320	MRC-5
	sensitive	resistant	sensitive	resistant	normal embryonic
					lung fibroblasts
1	>100	84.84 ± 4.79	>100	>100	>100
2	>100	79.19 ± 6.71	>100	>100	>100
3	>100	>100	>100	>100	>100
4	>100	>100	>100	>100	>100
5	>100	>100	>100	>100	>100
picH	>100	>100	>100	>100	>100
3-Me-picH	>100	>100	>100	>100	>100
5-Br-picH	>100	>100	>100	>100	>100
2,4-dipicH ₂	>100	>100	>100	>100	>100
2,5-dipicH ₂	>100	>100	>100	>100	>100
Ru precursor	>100	>100	>100	>100	>100
cisplatin	23.2 ± 2.95	2.33 ± 0.04	63.82 ± 4.06	16.06 ± 4.06	33.45 ± 5.12

Table S4. pK_a of the complexes $[ML(H_2O)]^+$ in the absence of chloride ions, the estimated Cl⁻/H₂O exchange constants $(\log K^{\circ} (H_2O/Cl^-) \text{ for the } [ML(H_2O)]^+ + Cl^- \rightleftharpoons [ML(Cl)] + H_2O$ equilibrium, estimated ratio of the chlorinated complex [ML(Cl)] at 100 and 4 mM chloride ion concentrations, and representative IC₅₀ values measured in human cancer cells for the complexes of $[Ru(\eta^6-toluene)(pic)Cl]$ (1), $[Ru(\eta^6-p-cymene)(pic)Cl]$, $[Os(\eta^6-p-cymene)(pic)Cl]$ and $[Rh(\eta^5-C_5Me_5)(pic)Cl]$.

	1	$[\mathbf{Ru}(\eta^6-p-$	$[\mathbf{Os}(\eta^6-p-$	[Rh (η ⁵ -
		cymene)(pic)Cl]	cymene)(pic)Cl]	C ₅ Me ₅)(pic)Cl]
p <i>K</i> _a (0 M Cl [−])	7.87	8.00 ^b	6.67 ^e	9.32 ^f
log <i>K</i> ' (H ₂ O/Cl ⁻)	1.3 ±0.1	1.4 ± 0.1 ^c	n.d.	2.20 ^f
rate of Cl ⁻ /H ₂ O	fast	fast ^b	slower ^e	fast ^f
			$t_{1/2} \sim 12 \min$	
[ML(Cl)] fraction				
$c(Cl^{-}) = 100 \text{ mM}$	68%	87% ^b	100% ^e	94% ^f
c(Cl) = 4 mM	8%	22% ^b	28% ^e	36% ^f
IC_{50} (μ M)	>100	82 (HeLa) ^d	17 (A549) ^e	343 (A549) ^f
	(Colo205) ^a	36 (FemX) ^d	4.5 (A2780) ^e	258 (CH1) ^f

^a Antiproliferative activity: 84.84 mM in Colo320. ^b Data taken from Ref. 23. ^c logK' = 1.83 reported in Ref. 23 determined by ¹H NMR spectroscopy was revised and a new data was determined by UV-vis spectrophotometry. ^d Data taken from Ref. 27. ^e Data taken from Ref. 29. ^f Data taken from Ref. 56.