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Abstract 

Background: Short ragweed (Ambrosia artemisiifolia) allergies affect more than 36 million 

people annually. Ragweed pollen grains release sub-pollen particles (SPP) of respirable size 

upon hydration or a change in air electrical conditions. The aim of this study was to 

characterise the proteomes and allergomes of short ragweed SPP and total pollen protein 

extract (TOT), and compare their effects with those of standard aqueous pollen protein 

extract (APE) using sera from short ragweed pollen-sensitized patients.  

Methods: Quantitative 2D gel-based and shotgun proteomics, 1D and 2D immunoblotting, 

and quantitative ELISA were applied. Novel SPP extraction and preparation protocols 

enabled appropriate sample preparation and further downstream analysis by quantitative 

proteomics. 

Results: The SPP fraction contained the highest proportion (94%) of the allergome, with the 

largest quantities of the minor Amb a 4 and major Amb a 1 allergens, and as unique, NADH 

dehydrogenases. APE was the richest in Amb a 6, Amb 5, and Amb a 3, and TOT fraction 

was the richest in the Amb a 8 allergens (83% and 89% of allergome, respectively). 
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Allergenic potency correlated well among the three fractions tested, with 1D immunoblots 

demonstrating a slight predominance of IgE-reactivity to SPP compared to TOT and APE. 

However, the strongest IgE binding in ELISA was noted against APE. New allergenic 

candidates, phosphoglycerate mutase and phosphoglucomutase, were identified in all the 

three pollen fractions. Enolase, UTP-glucose-1-phosphate uridylyltransferase, and 

polygalacturonase were observed in SPP and TOT fractions as novel allergens of the short 

ragweed pollen, as previously described. 

Conclusion and Clinical Relevance: We demonstrated that the complete major (Amb a 1 and 

11) and almost all minor (Amb a 3, 4, 5, 6, 8, and 9) short ragweed pollen allergen repertoire 

as well as NADH oxidases are present in SPP, highlighting an important role for SPP in 

allergic sensitization to short ragweed.  

 

Keywords: Ambrosia artemisiifolia, label-free quantification, pollen allergomes, sub-pollen 

particles, new short ragweed allergens 

 

Abbreviations: 

1D – one dimensional 

2D – two dimensional 

APE – aqueous pollen protein extract 

BCIP – 5-bromo-4-chloro-3-indolyl phosphate  

CHAPS – 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate 

cCBB – colloidal Coomassie Brilliant Blue 
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DTT – dithiothreitol 

ELISA – enzyme-linked immunosorbent assay 

FDR – false discovery rate 

IAA – iodoacetamide 

LFQ – label free quantification 

MS/MS – tandem mass spectrometry 

NADH – nicotinamide adenine dinucleotide dehydrogenase 

nLC-MS/MS – nano-liquid chromatography coupled to tandem mass spectrometry 

NBT – nitroblue tetrazolium 

PMSF – phenyl methyl sulfonyl fluoride 

SDS–PAGE – sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SPP – sub-pollen particles 

RT – room temperature (between 20°C and 25°C) 

TOT – total pollen protein extract 

TCA – trichloroacetic acid 

tPBS – Tween 20 phosphate buffered saline 

 XIC – extracted ion chromatogram 
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Introduction 

 

Much effort has been given to understand and alleviate allergic disorders caused by Ambrosia 

artemisiifolia (short or common ragweed), which affect more than 36 million people annually 

[1]. A. artemisiifolia is the most important seasonal aeroallergen in Europe and the USA, 

triggering rhinitis, conjunctivitis, and asthma, and is an exacerbating factor in atopic dermatitis 

[2, 3]. Recently, a sublingual tablet based on the major Amb a 1 allergen [4] was released to 

treat ragweed allergies. 

Asthma incidence has long been linked to the presence of pollen, even though pollen grains 

are too large (15–100 μm) to penetrate into the lower airways where asthmatic responses 

originate [5]. The aetiology of allergic asthma caused by pollen grains was uncovered when 

the phenomenon of sub-pollen particles (SPP) release from grass pollen grains upon hydration 

was discovered [6-9]. Particle expulsion and release from grass pollen grains upon exposure to 

humid conditions or thunderstorms has been linked to allergic symptom exacerbation and 

increased incidence of allergic asthma [10, 11].  

So far, only two studies have compared the water-extractable proteome and allergome of the 

pollen grain species and their SPP; these studies were conducted in Phleum pratense [12] and 

Olea europaea [13]. The results strongly suggest that in natural conditions, SPP may be the 

cause of allergic symptoms observed in sensitized patients, and that the allergenic properties 

of SPP are likely to be due to both their small size, which enables them to penetrate deeper 

into the bronchial airways, and their allergenic content.  

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Similar to grass pollen, short ragweed pollen grains, which are generally considered too large 

to reach alveoli, release SPP of respirable size upon hydration, which contain allergenic 

proteins and NAD(P)H oxidase activity [14]. NAD(P)H oxidase is an oxidoreductase shown to 

be involved in initiating adaptive immune responses against innoxious pollen proteins [15]. 

Recently, allergen characterisation of Ambrosia artemisiifolia revealed the novel Amb a 11 

allergen group, consisting of a mature cysteine protease of 37 kDa “hidden” between Amb a 1 

isoforms, as a new major allergen of short ragweed [16]. All short ragweed allergens have 

multiple isoforms, complicating proteomics analyses and leading to difficulties when creating 

compounds like commercial reagents for allergy diagnosis and therapy. Notably, Amb a 1 

(pectate lyase) is comprised of more than 10 isoforms 

(http://www.allergen.org/viewallergen.php?aid=32). Additionally, there are another 8 minor 

allergen groups (Amb a 3 and Amb a 7, plastocyanines; Amb a 4, defensins; Amb a 5 

homologs; Amb a 6, lipid transfer proteins; Amb a 8, profilins; Amb a 9 and Amb a 10, 

polcalcin and polcalcin-like proteins, respectively) [17, 18]. Even recent comprehensive 

immunoproteomic studies of short ragweed pollen [16, 18, 19], did not finalize allergen 

characterisation or determine allergic asthma mechanisms.  

Nowadays, diagnostic products for pollen allergies are solely comprised of defatted, aqueous 

pollen protein extracts (APE) or single components. There has yet been no study of A. 

artemisiifolia pollen proteome fractions that compares the complete set of proteins and 

allergens and their relative abundance in different parts of pollen: non-defatted total pollen 

protein extract (TOT), non-defatted SPP proteome, and APE. The aims of our study were to 

fully characterise short ragweed SPP since they can reach deep into lungs, and to re-assess 

suitability of standard methodology for allergenic diagnostic preparation by comparing TOT 

and SPP proteomes and allergomes with those of APE. These aims were accomplished with 

quantitative gel-based and shotgun proteomics, high resolution 1D and 2D SDS-PAGE, 1D 
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and 2D immunoblotting, quantitative ELISA, and assays using sera of short ragweed pollen-

sensitized patients. Novel SPP extraction and preparation protocols are presented that enable 

appropriate sample preparation and downstream analysis by quantitative proteomics.  

Materials and Methods 

 

Patient cohort and ethics statement 

Sera from 16 Serbian ragweed-allergic patients with IgE level in range 4.5–440 kUA/L 

(ImmunoCAP, w1; Phadia/Thermo Fisher, Uppsala, Sweden) were collected at the allergy 

clinic of the Institute for Virology, Vaccines and Sera “Torlak”, Belgrade, Serbia (Table 1). 

Five non-allergic sera (<0.1 kUA/L) were used as controls. The study was approved by the 

National Ethics Committee from the University of Belgrade, Serbia (No. 017/6 – 990/66). 

Written informed consent was obtained from donors prior to blood donation, and their data 

were processed and stored according to the principles expressed in the Declaration of 

Helsinki. Sera were either used individually or were pooled. The patient cohort contained a 

1:2 female to male ratio, an age range of 15–58 years, median and average age value of 35 

years (Table 1). 

Pollen samples 

Short ragweed pollen was obtained from the Institute for Virology, Vaccines and Sera, 

“Torlak”, Belgrade, Serbia. The pollen was collected during the 2013 and 2014 pollination 

seasons. Anthers were collected, dried at 27°C, and gently crushed. The pollen released was 

sieved and stored at 4–8°C before extracting pollen protein fractions. Purity of the non-

defatted, short ragweed pollen (99.5%) was checked by the particle count. All proteomic 
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investigations were run in duplicate, with three isolations of SPP, TOT, and APE fractions in 

the 2013 season, and two isolations in the 2014 season. 

Reagents and material 

Spectropor dialysis tubing was purchased from Fisher Scientific (UK). Organic solvents for 

mass spectrometry were obtained from J.T. Baker (Mallinckrodt Baker, Phillipsburg, USA). 

Ultra-pure water (18 mΩ) was prepared with a Smart2Pure3 Barnstead aqua purification 

system (Thermo Fisher Scientific, MA, USA). All other chemicals were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). 

Total pollen protein extract and sub-pollen particle isolation 

Short ragweed pollen grains (1 g) were osmolysed in deionized (10 mL) water in the presence 

of 0.5 mM PMSF for 1.5 h at room temperature (RT). In parallel, for the total pollen protein 

extraction, an extraction protocol by Sheoran et al. [20] was followed with minor 

modifications. An aqueous pollen grain suspension (1 mL, 1/10 w/v) was ground using a 

porcelain mortar and pestle for 5 minutes with constant vigorous grinding, and the proteins 

were precipitated with 4 volumes of cold acetone/10% TCA/25 mM DTT and incubated 

overnight at -20°C. The pellet was washed two times with pure cold acetone/25 mM DTT. 

Proteins were extracted from the pellet by direct re-solubilisation in incomplete rehydration 

buffer (7 M urea, 2 M thiourea, 4% CHAPS) for 1 h, followed by centrifugation at 14,000  g 

for 10 minutes.  

SPP were isolated as described Bacsi et al. [14] with several modifications. Intact pollen 

grains and pollen fragments were removed from suspension by low-speed centrifugation 

(1500  g for 5 minutes). This step was repeated twice, followed by centrifugation at 2000  

g for 5 minutes. Finally, the supernatant suspension containing SPP was pelleted by 

centrifugation (12,000  g for 15 minutes). SPP proteins and water soluble proteins from the 
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remaining supernatant were purified by the acetone/TCA method and extracted with 

rehydration buffer as described for total pollen proteins. The extraction scheme is given in 

Figure S1.  

Preparation of short ragweed aqueous pollen protein extract (APE) 

APE from short ragweed was prepared as previously described [21] with minor modifications 

that reflect the standard procedure for preparing aqueous pollen extracts for diagnostic 

purposes [22, 23]. Briefly, pollen samples (5 g) were defatted by acetone, suspended in 50 

mL of deionized water, and shaken at 4°C overnight. The suspension was centrifuged at 

14,000 × g for 20 minutes at RT. Protein sample concentrations were determined with the 

Bradford method [24].  

One-dimensional (1D) and two-dimensional (2D) SDS-PAGE 

1D electrophoresis was performed on 12% SDS polyacrylamide gels according to the 

standard Laemmli protocol [25] under reducing conditions. TOT, SPP, and APE samples (15 

g protein per well) were run on the gel (Figure S2). TOT, SPP, and APE protein extracts 

(125 μg) were isoelectrofocused with an Ettan IPGphor 3 IEF System (GE Healthcare, 

Uppsala, Sweden) and further separated using 12% SDS-PAGE in a Hoefer SE600 

Electrophoresis unit (Amersham Biosciences). The 2D gels were scanned with Typhoon FLA 

7000 (GE Healthcare) and spots were quantified and matched with Image Master 2D 

Platinum software v7.0 (GE Healthcare) (more details in Supp. Info). 

1D and 2D immunoblotting  

1D and 2D acrylamide gels were transferred to PVDF membranes with a semidry Nova-Blot 

system (GE Healthcare, Uppsala, Sweden). The membranes were then blocked in 1% BSA 

dissolved in 0.05% Tween 20 phosphate-buffered saline (tPBS) for 2 h at RT. To identify 
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allergenic proteins, for 2D blotting, serum was pooled from all 16 patients and samples from 

the first 10 patients were utilized for individual 1D blot analysis (Table 1). Sera were diluted 

1/10 for 1D blotting in 0.2% BSA in tPBS. Membranes were incubated with sera at 4C 

overnight with agitation, and washed three times with tPBS. 2D immunoblot detection was 

carried out by a 1 h incubation with mouse anti-human IgE conjugated with horseradish 

peroxidase (HRP) (dilution 1:2000, Abcam, UK) and positive signals were developed with a 

chemiluminescence substrate for HRP detection on a ChemiDoc instrument (BioRad, USA). 

For 1D blots, membranes were incubated with a rabbit anti-human IgE antibody (dilution 

1:2000, MIAB, Sweden) at RT for 2 h. 1D immunoblot detection was carried out by an 

alkaline phosphatase-conjugated goat anti-rabbit IgG (dilution 1:1000, Jackson 

Immunoresearch, USA) after 2 h incubation at RT. The membrane strips were than 

simultaneously developed in 0.165 mg/mL BCIP, 0.33 mg/mL NBT in 100 mM NaHCO3, 5 

mM MgCl2, pH 9.5.  

IgE-reactivity of A. artemisiifolia pollen sub-allergomes by quantitative ELISA 

The rehydration buffer in which TOT and SPP pollen fraction samples were initially 

dissolved was exchanged with 0.1 M carbonate buffer, pH 9.6, and solutions were filtered 

with Amicon
 
Ultra-0.5 Centrifugal filters with a cutoff of 3 kDa (Millipore). Analytical 12% 

1D SDS-PAGE profiles under reducing conditions before and after this buffer exchange were 

recorded and the resulting profile showed no major differences (data not shown). Individual 

serum IgE-reactivity to the commercial short ragweed caps (ImmunoCAP, w1) was 

determined on the ImmunoCAP System (Phadia AB/Thermo Fisher Scientific) according to 

the manufacturer’s instructions. The results are presented as kUA/L, where the cut-off for 

allergen-specific IgE was ≥0.10 kUA/L (Table 1). Quantitative ELISA measurements against 

3 pollen fractions were performed using methods described by Apostolovic et al. [26]. After 

incubation with 50 µL mouse-anti-human IgE-HRP (Abcam, diluted 1/2000) for 1 h at RT, 
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TMB substrate was added and the reaction was stopped with 1 M H2SO4. Results were 

expressed as kUA/L and were considered positive when the IgE responses exceeded the mean 

+ 3 SD of the 2 healthy controls (kUA/L ≥0.10). More details are available in Supplementary 

Information.  

In-gel and in-solution digestion for mass spectrometry and shotgun proteomics analysis 

After cCBB staining and scanning, spots were excised and in-gel digested using the method 

of Shevchenko et al. [27]. The proteins were digested with proteomics-grade porcine trypsin 

(approximately 150 ng of trypsin in 25 mM ABC per gel spot) as previously described [28]. 

In-solution digestion of the short ragweed pollen fractions was performed according to the 

protocol: https://masspec.scripps.edu/services/proteomics/insol_prot.php, presented in detail 

in Supplementary Information.  

Nano-LC-MS/MS 

Trypsin-digested peptides were chromatographically separated using an EASY-nLC II 

system (Thermo Fisher Scientific Inc.) with a 2-column set up: a trap column C18-A1, 2 cm 

(SC001, Thermo Fisher Scientific Inc.) and an analytical column PepMap C18, 15 cm  75 

µm, 3 µm particles, 100 Å pore size (ES800, Thermo Fisher Scientific Inc., Bremen, 

Germany). A total of 2 μL of each shotgun sample and 4 μL of each 2D gel sample was 

loaded and separated as previously described [29]. 

Identifying short ragweed pollen proteins through a protein database search 

Identification of the short ragweed pollen proteins was performed using Proteome discoverer 

1.3 (Thermo Fisher Scientific Inc.) and PEAKS Studio 7.5 (BSI, Ontario, Canada) with more 

details in the Supplementary Information.  
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Label-free quantification of TOT, SPP, and APE proteomes  

Label-free quantification (LFQ) was performed with the PEAKS Suite 7.5 (BSI, Ontario, 

Canada) LFQ algorithm, upon previously identified mass spectrometry shotgun results 

through PEAKS DB and De Novo algorithms. Filters were set to 20 ppm for precursor mass 

error tolerance and 0.5 Da for fragment ions, with a FDR set at 1%. More details are found in 

the Supplementary Information. 

Protein sequence analysis and bioinformatics tools 

A homology search and alignment of proteins identified from the amino acid sequences was 

achieved using UniProt, BLAST, and Align. Further functional subproteome mapping 

enrichment analyses were performed with the GO ontology consortium, QuickGO software 

(http://www.ebi.ac.uk/QuickGO), and FunRich software (www.funrich.org). 

 

Results 

Unique proteins and short ragweed pollen allergens distribution within different pollen 

fractions  

A common obstacle in plant proteome analysis is the lack of sequenced genomes and the very 

limited number of database protein entries for many plant species and tissues. This problem 

arose when analysing A. artemisiifolia pollen, whose proteins were mostly identified by 

determining their homology to well-studied model plant species (Arabidopsis thaliana, Oryza 

sativa, etc.,) whose genomes are sequenced, annotated, and the corresponding homologous 

protein sequences are available in protein databases.  

In-solution trypsin-digested TOT, SPP, and APE pollen fractions were subjected to shotgun 

proteomic analyses. Complete lists of identified proteins in the analysed pollen fractions are 

presented in Table S1-3. The major qualitative proteome differences observed between these 
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3 pollen fractions are depicted in Figure 1. It is interesting to note that all three pollen 

fractions contained a full set of major allergens (Amb a 1 and 11) and almost all minor short 

ragweed allergens (Amb a 3, 4, 5, 6, and 8). 

The TOT fraction also contained unique proteins such as a novel isoform with high sequence 

homology to the pan-allergen profilin-1 from Artemisia vulgaris (mugwort). The APE pollen 

fraction contained a 10 kDa polcalcin isoallergen (Amb a 9 minor allergen group) (Figure 1, 

Table S3) as a unique protein entry. In addition to other polcalcins discovered, within all 

three fractions, a 16 kDa polcalcin from mugwort species was detected (Q2KM81), probably 

representing an undiscovered, homologous isoform in short ragweed (Tables S1-S3); whether 

this isoform is an allergen candidate needs to be confirmed, though Q2KM81 is an allergen 

(Art v 5.0101). Similarly, pectate lyase from mugwort (A0PJ16, minor allergen Art v 6.0101) 

was detected in SPP, likely representing an undiscovered, homologous pectate lyase isoform 

in short ragweed (Figure 1, Tables S2 and S5). In addition, NADH dehydrogenase protein 

was detected, which has a role in the unique allergic response to SPP (Tables S2 and S5).  

Gene ontology (GO) cellular component analyses revealed that TOT and SPP fractions 

contained proteins from many cellular component categories, having almost twice more GO 

terms than the APE fraction proteins (Figure 2). The APE fraction mostly contained proteins 

from pollen cytoplasm (50%) and cytoskeleton (37%), with insignificant enrichment in 3 

other terms, while SPP contained a substantial share of cytoplasm and cytoskeleton proteins 

as well as significant enrichment for mitochondrial, respiratory chain, phosphopyruvate-

hydratase complex, and endoplasmic reticulum proteins. The TOT fraction also had all these 

proteins significantly enriched, in addition to microtubules and proton-transporting ATP 

synthase. Interestingly, SPP appear to possess the richest pollen sub-proteome regarding the 

number of different GO identifiers (69) as compared to TOT (66) and APE (48) fractions 

(Table S4).  
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Quantitative mass spectrometry reveals the most abundant major short ragweed allergens 

are within SPP among three different pollen fractions 

Following shotgun analyses, a label-free quantification of identified proteins provided 

comparative analysis of proteomes and allergomes from TOT, SPP, and APE fractions. 

Dominant allergens of the SPP fraction were Amb a 4 (76%), Amb a 6 (10%), and major 

allergen group Amb a 1 (6%), while for the APE fraction Amb a 6 (42%), Amb a 4 (39%), 

and Amb a 5 (8%) predominated, and the TOT fraction contained 42% of Amb a 4, 33% of 

Amb a 8, and 14% of Amb a 1 (Figure 3A). The percentage of shared Amb a allergen groups 

within each pollen fraction cannot illustrate their actual (absolute) difference in abundance. 

However, a plot with combined peak areas of all allergen isoforms belonging to a certain 

Amb a allergen group (Figure 3B) showed the SPP fraction to be the most abundant in Amb a 

4, Amb a 1, and Amb a 11, while APE was the richest in Amb a 6, Amb 5, and Amb a 3, and 

TOT fraction was richest in the Amb a 8 allergen group. The extent of allergens within the 

total sum of pollen proteins quantified by LFQ approach (e.g. allergome within proteome), 

showed that 83%, 89%, and 94% of allergens belonged to the Amb pollen allergome of TOT, 

APE, and SPP, respectively (Table S5).  

A heatmap of pollen proteins in TOT, SPP, and APE fractions shown in Figure 4 allowed for 

effortless visual inspection of differences in protein abundance; green cells with black circles 

represent totally absent protein isoforms. The TOT fraction had the highest proportion of the 

most abundant proteins (red-coloured cells) within its proteome, while SPP and APE 

fractions were almost equal (Figure 4, Table S5). It can be observed that the SPP fraction 

possessed unique and substantially higher levels of dehydrogenases (NADH) and dismutases 

(SOD), respectively, while containing fewer missing proteins compared to the APE fraction 

(Figure 4).  
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2D SDS-PAGE analysis and MS/MS analysis of selected allergen spots  

Spots of interest, such as IgE binding spots and spots with large differences in quantity 

among the 3 pollen fractions (at least 1.5 times more or less abundant as revealed by Image 

Master 2D Platinum software v7.0 (GE Healthcare, USA), were analysed by mass 

spectrometry (Figure 5A, Table 2). All short ragweed allergen groups were identified except 

for plastocyanine Amb a 7 and polcalcin-like Amb a 10. Additionally, protein spots with the 

exclusive presence in certain fractions and/or 1.5 times higher abundance compared to the 

other pollen fractions were analysed, such as spot group 16 and X2 in the SPP fraction 

(Figure 5A, Table 2).  

Allergenic properties of short ragweed-pollen fractions  

The allergenic properties of TOT, SPP, and APE fractions were characterised by 2D 

immunoblotting with pooled serum from all 16 patients (Figure 5B). The TOT, SPP, and 

APE IgE-binding 2D maps appeared similar with some minor differences (Table 2, Figure 

5B). In all three protein fractions, the major allergen Amb a 1 (spots 1, 2, 6, 7, 8, 9 and 10) 

and Amb a 11 (spots 3, 4 and 5) isoforms, as well as minor acidic allergen isoforms of Amb a 

4 (spots 12-15) and Amb a 8 (spot 18), bound IgE from the serum pool, which agrees with 

our MS/MS data (Figures 5A, B and Table 2). However, not all Amb a 1 group isoforms 

reacted with the serum pool, such as spot 11 determined to be Amb a 1.0501 (formerly Amb 

a 2) (Figures 5A, B). In addition, there were some fine differences in Amb a 11 isoform 

reactivity patterning with enhancement in the SPP fraction (Spot 5 in Figure 5B, Table 2). 

The minor allergen groups from short ragweed, Amb a 5 (spot 21), 6 (spot 22), and 9 (spot 

23) present in TOT, APE, and SPP did not bind IgE from the pooled patient sera, in contrast 

to the plastocyanine minor Amb a 3 allergens (Spot 20 in Figures 5A, B and Table 2). A 

protein spot (X3) in the ТОТ fraction that bound serum IgE at 16 kDa and pI 6.3 was not 

present in SPP or APE fractions. Similarly, an IgE-reactive protein spot at 16 kDa and pI of 
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6.7 was present only in TOT and APE fractions (spot X1, Figure 5B). The MS/MS data failed 

to reveal their identities, including the IgE-reactive spot X4 present in all pollen fractions.  

The MS/MS spectra of protein spots at approximately 55 kDa in the acidic region showed 

that sera from ragweed-allergic patients could bind to new allergen candidates, enolase/UTP-

glucose-1-phosphate-uridylyltransferase/polygalacturonases (group of spots 17 in Figures 5A, 

B, and Table 2). Similar to results observed by Bordas-Le et al. [18], we detected enolase and 

UTP-Glc at acidic regions at 55 kDa, however, rather we observed separate protein identity 

spots (see spots 17, 18 within spot group 17 in Table S6). This group of enzymes (spot group 

17) reacted strongly in the SPP fraction, faintly in the TOT fraction, and no reactivity is seen 

on the APE blot fraction, although these proteins were detected using APE 2D SDS-PAGE 

(Figure 5A). Phosphoglycerate mutase found in the short ragweed pollen proteome by 

Bordas-Le et al. [18] was not the sole allergen candidate in that particular spot, while in our 

study this protein reacted together with phosphoglucomutase in all 3 pollen fractions (Spot 

group 19 in Figures 5A, B and Table 2). In spot group 19 (Table 2), we identified 2,3 

phosphoglycerate mutase and phosphoglucomutase as separate spots with single protein hits 

per protein spot (for more details see spots 32, 33 within spot group 19 in Table S6).  

Additionally, the IgE-reactivity of individual patient sera to TOT, SPP, and APE fractions 

was determined by quantitative ELISA (Figure 6, Table 1) and 1D immunoblotting (Figure 

S3). The IgE reactivity in ELISA showed a high correlation between three different samples, 

with the highest correlation between SPP and TOT extracts (rho=0.98; p<0.0001) (Figure 6). 

Interestingly, the IgE potency of the APE fraction was slightly more similar to TOT fraction 

potency than to SPP fraction potency. Median and average values of IgE binding followed 

the same decreasing order: APE, TOT, and SPP fractions (1.2, 0.87, and 0.63 kUA/L for 

median values, and 2.32, 1.68, and 0.68 kUA/L for average values, respectively) as calculated 

from Table 1. With only a few exceptions, the most prominent IgE reactivity was observed 
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for the APE allergenic extract (Table 1). These data show that individual differences in 

reactivity exist among patients. These differences are partially supported and better visualized 

through the individual 1D IgE-reactive immunoblots from the first 10 patients (Table 1, 

Figure S3), where overall IgE reactivity was similar among 3 fractions, however SPP slightly 

predominates in terms of different allergenic bands and their frequency.  

 

Discussion 

 

We have, for the first time, comprehensively described the proteome and allergome of short 

ragweed SPP, and compared these profiles to those from aqueous and total pollen protein 

fractions. Our aim was to explore how SPP may contribute to the immunopathogenicity of 

allergenic properties besides their alveoli-penetrating size, and also to re-assess the suitability 

of standard methodology for preparing allergenic diagnostics.  

Vrtala et al. [22] previously showed that the pollen proteome pattern depends on the 

extraction procedure and that majority of allergens emerge with aqueous extraction (e.g. upon 

pollen grain hydration), while harsher extraction procedures also collect non- and less 

allergenic membrane and cytoskeletal proteins [22]. Qualitative differences between 

proteomes in mass spectrometry shotgun analysis revealed that the TOT fraction had the 

highest number of different protein groups (Figure 1). This can easily be explained due to the 

grinding step followed by the detergent protein extraction (Figure S1). The grinding step was 

added to maximize protein qualitative yield in the TOT fraction because proteins not 

extracted by the aqueous extraction could still be allergenic. It is evident that the TOT 

fraction contained unique proteins difficult to extract with water only, such as cytoskeletal 

actins, tubulin alpha and beta, and heat shock proteins (Figure 1). In natural conditions, grass 
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and tree pollen grains can burst even without heavy rain or extremely high relative humidity 

(80%) [13, 30]. Sometimes, only strong wind or air electric conditions (during 

thunderstorm) can induce pollen rupture [7, 31], likely exposing membrane proteins, non-

soluble cytoskeletal proteins, and other pollen proteins not easily extractable with water. This 

justifies the use of a detergent to enhance protein extraction in TOT and SPP fractions.  

Pollen allergy diagnostic products are currently solely based on defatted, aqueous pollen 

extracts and/or single protein component from this extract. It has been described that the 

waxy-lipid coating of Bermuda grass pollen contains proteins with IgE-binding capability 

and protease activity, such as cysteine protease and endoxylanase [32], that are completely 

removed during defatting. Therefore, we started our isolation of TOT and SPP fractions from 

un-defatted pollen, to be able to observe any difference stemming from APE fraction, which 

is normally prepared from de-fatted pollen grain (Figure S1).  

Unique protein entries in the SPP fraction that are important from an allergy point of view 

include NADH dehydrogenase, which acts as a synergizing factor for inducing allergic 

inflammation via producing reactive oxygen species [33, 34]. Moreover, both shotgun and 

gel-based proteomic analyses suggested that the SPP fraction contained the full Amb a major 

(Amb a 1 and Amb a 11) set and the diversified minor (Amb a 3, 4, 5, 6, 8 and 9) set of 

officially recognized allergen groups, with a total of 22 allergen isoforms, compared to the 

TOT fraction with 20 and APE with 18 allergen isoforms (Tables S1-S3). However, this 

diversity cannot be explained by the different repertoire of Amb a allergen functions since in 

each pollen fraction there is at least one isoform member representing major and minor 

allergen groups in short ragweed. Rather, the difference is quantitative, where LFQ data 

supported MS/MS shotgun analyses, pointing to SPP as the fraction with the highest (94%) 

shared allergome within its proteome (Table S5). 
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Regarding molecular function, it is worthy to mention that pectate lyase activity (a function 

of the major short ragweed Amb a 1 allergen) was highest in the SPP fraction, thus 

confirming previous qualitative shotgun MS/MS data of SPP fraction having the richest 

repertoire of major Amb a 1 allergens with 10 isoforms (Table S4). The number of different 

GO terms in biological processes, molecular function, and cellular localization was also 

highest in the SPP fraction (Table S4), containing the most numerous GO terms in cellular 

localization (Figure 2). This result can be interpreted as SPP being armed with variety of 

pollen cellular parts that enhance the allergic response. Additionally, in the cytoplasm and 

cytosol, where the majority of allergens reside, membrane-associated, extracellular region, 

and respiratory chain proteins have already been shown to be novel allergenic candidates or 

allergy response enhancers, such as enolase and NAD(P)H oxidoreductases (Figure 2). This 

is important in the context of current pollen preparations for allergy diagnostics and 

treatment, which are mostly based on aqueous pollen extraction [34, 35]. SPP possesses 

NADH dehydrogenase as a unique entry, suggesting that this enzyme could be associated 

more firmly with SPP granules, in contrast to the many highly water-soluble proteins in the 

APE fraction. In addition, it is interesting to observe that there are much more cysteine 

proteinase inhibitors, cystatins, in the APE fraction than in TOT and SPP fractions. Whether 

this potential inhibition would influence allergenicity of the APE fraction warrants further 

investigation, and the relevance of potential cysteine protease inhibition (Amb a 11 major 

allergen group) in terms of modulating the allergic response also needs further examination. 

The results from the 2D gel proteome quantification are in line with the LFQ results, and 

point to a higher content of acidic Amb a 4 isoforms and basic forms in SPP. Amb a 4 is a 

minor allergen in short ragweed pollen, but is a major allergen in mugwort (Art v 1). For 

ragweed pollen, both basic and acidic isoforms of this defensin-like allergen have been 

described, while the major mugwort pollen allergen, Art v 1, exists only in a variety of basic 
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isoforms [36]. It is common for mugwort-sensitized patients to react to homologous allergens 

in A. artemisiifolia [37]. In fact, 42% of Art v 1-sensitized patients also react to Amb a 4, 

while ragweed pollen-allergic patients also react to Art v 6 (a homologous allergen in 

mugwort, pectate lyase) [37, 38]. Therefore, a high load of both basic and acidic isoforms of 

Amb a 4 in ragweed SPP may directly contribute to cross-sensitization and cross-reactivity 

between mugwort and ragweed. 

In the IgE immunoblot, we showed that pooled patient sera reacted with most Amb a 1 

isoforms, which agrees with previous findings showing that >90% of ragweed allergic 

patients’ IgE-reactivity is directed toward Amb a 1 [39, 40]. However, our patient serum pool 

did not react with the Amb a 1.05 isoallergen group (former Amb a 2), which is recognized in 

about 70% of ragweed allergic patients [41, 42]. Additionally, 2D immunoblotting and 

MS/MS data revealed a strong response to acidic Amb a 4 allergen in all 3 fractions, with the 

most prominent response in SPP fraction. In addition, as a secondary finding from 1D 

immunoblots of the first 10 short ragweed allergic patients (Figure S3), 8 out of 10 patients 

reacted to Amb a 4 in SPP, which is surprising considering that Amb a 4 is a minor allergen. 

Amb a 11 reactivity is also present in all 3 fractions but was most pronounced in SPP (Table 

2). In contrast, Amb a 3 allergens bound IgE in TOT and APE fractions but not in SPP (Table 

2, Figures 5A, B). This lack of IgE binding to Amb a 5, 6, and 9 by patient serum pool in the 

2D immunoblot may be due to their overall low IgE reactivity to these minor pan-allergens, 

whose IgE reactivity rate is less than 20% in a population, www.allergen.org), or that these 

patients were preferably reactive to conformational epitopes of Amb a 5, 6, and 9 that were 

destroyed in the reducing conditions of SDS-PAGE. 
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The novel allergen candidates previously reported by Bordas-Le et al. [18], such as the minor 

enolase and the major polygalacturonases/UTP-glucose 1-phosphate uridylyltransferase 

(UTP-Glc) were also detected and confirmed in our study. Novel allergenic candidates 

revealed in this study were phosphoglycerate mutase and phosphoglucomutase. 

The IgE-reactivity as determined by quantitative ELISA showed a high correlation between 

the three different samples, with the highest median and mean values occurring in the APE 

fraction. These results point to the fact that the APE fraction, due to its highest allergenic 

potency (approximately double the SPP allergenic potency based on median ELISA IgE 

binding values), would be suitable for diagnosing short ragweed allergy. In contrast, LFQ and 

shotgun data from the SPP fraction demonstrated superior Amb a 1 and Amb a 11 abundance, 

and the SPP fraction IgE reactivity was highest in 1D immunoblots (Figure S3).  

In particular, IgE reactivity to the SPP fraction seems to follow the specific sensitization 

pattern of Amb a 4 allergen. In the future, the SPP fraction should be regarded as an adjuvant 

component in diagnostics because of its superb potential allergenic properties; this fraction 

was the richest in the number of distinct officially recognized Amb a allergens, contained the 

most overlap between allergome and proteome, possessed the highest content of minor Amb 

a 4 and major Amb a 1, Amb a 11 allergens, and exhibited the unique possession of NADH 

oxidoreductases. In addition, SPP are the major air allergen carriers beside intact pollen 

grains, and are especially important when considering the allergen administration route to the 

lung. 

Our study revealed the new allergenic candidates phosphoglycerate mutase and 

phosphoglucomutase, which were IgE-reactive in all three fractions, and confirmed the 

presence of the previously described enolase, UTP-glucose-1-phosphate uridylyltransferase, 

and polygalacturonase as allergens that were primarily reactive in the SPP fraction.  
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In conclusion, we were able to demonstrate that the full major and minor short ragweed 

allergen repertoire is present and can reach alveoli through SPP therefore confirming the 

importance of SPP in the process of allergic sensitization. The very rich content of 

oxidoreductases, especially NADH oxidoreductase, present in SPP further strengthens the 

role of these particles in the process of pollen allergic inflammation in the lung. 
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Table 1. Demographic description of patient cohort with previous clinical history of short 

ragweed allergy and w1 ImmunoCAP and quantitative ELISA results 

 

No Sex Age 

short ragweed w1   
 

Amb APE  Amb TOT  Amb SPP  

CAP 

(kUA/L) 

and class 

 
ELISA 

(kUA/L) 

1 M 42 18.5 (4)  0.123 0.231 0.223 

2 M 29 23.1 (4)  0.262 0.224 0.227 

3 F 30 35.5 (4)  0.275 0.231 0.219 

4 F 58 >100 (6)  n.d. n.d. n.d. 

5 M 51 440 (6)  11.097 9.377 8.331 

6 M 23 82.6 (5)  1.881 1.482 1.240 

7 M 34 35.4 (4)  0.309 0.220 0.225 

8 M 48 94.9 (5)  3.467 1.798 1.125 

9 F 15 65.6 (5)  0.390 1.702 1.137 

10 F 36 253 (6)  4.917 0.867 0.630 
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11 M 25 54.4 (5)  1.632 1.371 1.133 

12 M 37 69.3 (5)  1.198 0.312 0.233 

13 M 29 240 (6)  4.774 4.709 2.880 

14 F 35 90.6 (6)  4.012 2.385 1.142 

15 M 41 29.2 (4)  0.365 0.236 0.230 

16 M 25 4.5 (3)  0.121 0.115 0.110 

 

Legend: w1, ImmunoCAP on Ambrosia artemisiifolia; SPP, sub-pollen particles; TOT, total 

pollen protein extract; APE, aqueous pollen protein extract; n.d., not determined. Bold case 

values in quantitative ELISA experiments, performed with non-commercial “in-house” 

prepared TOT, SPP, and APE fractions, denote the highest value of IgE binding among the 

three pollen protein fractions. The results are presented as kUA/L, where the cut-off for 

allergen-specific IgE was ≥0.10 kUA/L, based on the sera assessment of two healthy (non-

allergic) patients. 

 

 

Table 2. IgE reactive protein spots/groups and allergens identified in TOT, SPP, and APE 

fractions of short ragweed pollen by 2D SDS-PAGE and a 2D immunoblot probed with 

pooled patient sera 

 

Spot/ 

Group 

No 

Mw/pI - Gel 

(average) 

Mw/pI 

database 

Accession 

number 
Protein/Allergen Name*                     

2D Immunoblot  

TOT SPP APE 

1 43/5.9 42.7/5.90 P27759 
Pollen allergen Amb a 1.0101      

● ● ● 

2 43/5.8 42.7/5.90 P27759 ● ● ● 

3 41/6.4 43.1/6.90 V5LU01 

Pollen allergen Amb a 11.0101 

● ● ● 

4 41/6.6 43.1/6.90 V5LU01 ● ● ● 

5 41/6.9 43.1/6.90 V5LU01 ○ ● ○ 

6 38/8.1 43.6/7.20 P27760 
Pollen allergen Amb a 1.0201 

● ● ● 

7 38/8.3 43.6/7.20 P27760 ● ● ● 

8 38/5.9 42.9/6.10 P27761 
Pollen allergen Amb a 1.0301 

● ● ● 

9 38/6.3 42.9/6.10 P27761 ● ● ● 

10 42/6.0 42.8/5.97 P28774 Pollen allergen Amb a 1.0401 ● ● ● 

11 43/6.3-6.8 44.1/6.47 P27762 Pollen allergen Amb a 1.0501 ○ ○ ○ 

12 26/4.9 9.9/4.82 D4III3 Pollen allergen Amb a 4.0101 ● ● ● 
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13 26/5.1 9.9/4.82 D4III3 ● ● ● 

14 26/5.4 9.9/4.82 D4III3 ● ● ● 

15 26/5.9 13.3/5.04 D4IIH1 ● ● ● 

16 27/9.0 13.4/7.52 Q84ZX5 
Major pollen allergen Art v 1,                   

OS=Art. vulgaris   
○ 

  

17 52-58/5.2-6.0 

47.6/5.61 Q43321 
Enolase, (Enol)  

OS=Alnus glutinosa 

● ● ○ 51.8/5.78 P19595 

UTP--glucose-1-phosphate 

uridylyltransferase, (UTP-Glc)  

OS=Solanum tuberosum 

43.4/6.86 O22818 
Probable polygalacturonase 

At2g43860, OS=A. thaliana 

18 14/4.6-4.9 
14.1/4.88 Q2KN23 Pollen allergen Amb a 8.0102 

● ● ● 
14.3/5.02 Q64LH0 Pollen allergen Amb a 8 

19 66/6.7 

61/5.85 Q9M9K1 

Probable 2,3-bisphosphoglyc-

phosphoglycerate mutase 2, 

(PGM), OS=A. thaliana ● ● ● 

63/5.71 P93805 
Phosphoglucomutase (PglcM), 

cytoplasmic 2 OS=Z. mays 

20 10/6.4 11.4/6.11 P00304 Pollen allergen Amb a 3.0101 ● ○ ● 

21 5/7.9 5.0/8.18 P02878 Pollen allergen Amb a 5.0101 ○ ○ ○ 

22 11/8.7 12.8/8.93 O04004 Pollen allergen Amb a 6.0101 ○ ○ ○ 

23 10/4.15 9.3/4.15 Q2KN26 Pollen allergen Amb a 9.0102 ○ ○ ○ 

X1 16/7.2   n.d. ●  ● 

X2 16/9.1   n.d.  ○  

X3 17/6.5   n.d. ●   

X4 10/5.9   n.d. ● ● ● 

 

* As indicated by www.allergen.org. 

● - protein spot or group of spots present in 2D SDS-PAGE and IgE reactive in 2D 

immunoblot (allergens); ○ - protein spot or group of spots present only in respective 2D SDS-

PAGE profile. Lack of any circle indicates complete absence of designated protein/allergen. 

N.d. not determined. More information on protein identity determination from 2D SDS-

PAGE is available in Table S6. 
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Figure Captions 

 

Figure 1. Venn diagram of the short ragweed pollen fractions’ protein groups and their 

unique protein group entries alongside each pollen fraction. Protein group entries appearing 

as boldface text represent either officially recognized allergens or proteins with an established 

role in modulating the allergic response, such as NADH dehydrogenase. Numbers in brackets 

denote the total number of protein groups identified in each pollen fraction. TOT, total pollen 

protein extract; SPP, sub-pollen particles; APE, aqueous pollen protein extract; HSP70, heat 

shock protein 70. 

 

Figure 2. Enrichment analysis and comparison of gene ontology (GO) cellular localization of 

proteins percentages among different short ragweed pollen fractions. Analyses were 

performed with FunRich software, and the Asteraceae database as a background set of 

proteins (the same database was used for tandem mass spectrometry protein identification), 

since the short ragweed genome has not been fully sequenced and annotated. The closer the 

p-value is to zero, the more significant the particular GO term associates with the group of 

proteins (i.e. less likely that observed annotation of the particular GO term to a group of 

proteins occurs by chance). TOT, total pollen protein extract; SPP, sub-pollen particles; APE, 

aqueous pollen protein extract. 

 

Figure 3. Percentage of short ragweed major and minor pollen allergen groups within TOT, 

SPP, and APE pollen fractions obtained from proteomic shotgun LFQ studies. (A) Percentage 

of shared Amb allergen groups within different pollen fractions. (B) Plot of combined peak 

areas under the XIC curve for each Amb a allergen group compared across fractions. Each 

protein entry within the LFQ peak area analysis was normalized to the TIC of TOT, SPP, and 
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APE samples at a ratio of 1:0.78:1.06. TOT, total pollen protein extract; SPP, sub-pollen 

particles; APE, aqueous pollen protein extract; XIC, extracted ion chromatogram; TIC, total 

ion current; LFQ, label-free quantification of proteins. 

 

Figure 4. Label-free quantification (LFQ) heat map of TOT, SPP, and APE protein fractions 

of short ragweed pollen. Proteins were clustered when they exhibited a similar expression 

trend across samples. Protein names in red represent important groups of short ragweed 

allergens, including allergens identified from mugwort that most likely represent homologous 

short ragweed allergen isoforms. A heatmap was created by PEAKS LFQ algorithm and cell 

colour represents the log2 ratio of the sample to the base sample. Due to the best peptide 

matching features based on retention time, the PEAKS LFQ algorithm chose TOT as the base 

sample and its cell colour represents the log2 ratio of TOT peak area divided by the smaller 

value between SPP and APE. Red cell colour denotes highly abundant proteins, while green 

cell colour marks highly underrepresented proteins or completely missing proteins. Black 

circles on the green colour boxes denote missing proteins. For normalization, total ion current 

(TIC) was chosen (experimentally determined 1:0.78:1.06 for TOT:SPP:APE). Underlined 

text represents substantially higher abundance of dehydrogenases (i.e. NADH) and 

dismutases (i.e. SOD) in the SPP fraction compared to the APE fraction. TOT, total pollen 

protein extract; SPP, sub-pollen particles; APE, aqueous pollen protein extract; PEP, 

phosphoenolpyruvate; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; SOD, 

superoxide dismutase; MAPKKK, mitogen-activated protein kinase kinase kinase.  

 

Figure 5. (A) Representative cCBB stained polyacrylamide gels for TOT, SPP, and APE 

short ragweed pollen fractions separated by 2D electrophoresis under reducing conditions and 

(B) Representative 2D immunoblots of TOT, SPP, and APE short ragweed pollen fractions 
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after transferring proteins to membranes and probing with pooled patients’ sera. Rectangles 

No. 16 and X2 in SPP’s SDS-PAGE denote unique protein groups in the SPP fraction, while 

circled protein groups labelled from 12-15 visually highlight the noticeably increased 

quantity of acidic Amb a 4 isoforms in the SPP fraction compared to TOT and APE fractions. 

The remaining rectangles denote two or more protein spots belonging to a certain protein 

group labelled with the corresponding number. TOT, total pollen protein extract; SPP, sub-

pollen particles; APE, aqueous pollen protein extract; Enol, enolase; UTP-Glc, UTP-glucose-

1-phosphate uridylyltransferase; PGM, 2,3-bisphosphoglycerate-independent 

phosphoglycerate mutase; PglcM, phosphoglucomutase. 

 

Figure 6. Correlation of quantitative ELISA assay results with Pearson correlation coefficient 

rho. TOT, total pollen protein extract; SPP, sub-pollen particles; APE, aqueous pollen protein 

extract. 

 

Supporting Information 

Additional Supporting Information may be found online in the supporting information tab for 

this article: 

Table S1. List of protein groups identified in the short ragweed total pollen protein (TOT) 

fraction via proteomic shotgun analysis.  

 

Table S2. List of protein groups identified in the short ragweed sub-pollen particle (SPP) 

fraction via proteomic shotgun analysis.  
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Table S3. List of protein groups identified in the short ragweed aqueous pollen protein 

extract (APE) fraction via proteomic shotgun analysis.  

 

Table S4. List of cellular component gene ontology (GO) identifiers in TOT, SPP and APE 

fractions.  

 

Table S5. Label-free quantification results of TOT, SPP, and APE fractions of short ragweed 

pollen. APE, aqueous pollen protein extract; SPP, sub-pollen particles; TOT, total pollen 

protein extract. 

 

Table S6. Protein spot identification lists from TOT, SPP, and APE from 2D SDS-PAGE 

analysed by the SEQUEST algorithm. 

 

Figure S1. Fractionation and extraction strategy of A. artemisiifolia pollen. APE, aqueous 

pollen protein extract; SPP, sub-pollen particles; TOT, total pollen protein extract. 

 

Figure S2. Representative 1D SDS-PAGE profiles of TOT, SPP, and APE fractions of short 

ragweed pollen under reducing conditions. Mw, molecular weight protein markers in 

kilodaltons. 

 

Figure S3. 1D immunoblot with IgE reactivity pattern of the first 10 patients against resolved 

pollen protein fractions of short ragweed. Mw, molecular weight protein markers in 

kilodaltons (kDa); TOT, total pollen protein extract; SPP, sub-pollen particles; APE, aqueous 

pollen protein extract; NEG, serum of a patient who is not allergic to the short ragweed 

(negative, healthy serum); CC1, conjugate control that does not contain serum; CC2, 
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conjugate control that does not contain secondary antibody (antihuman IgE antibody); CC3, 

conjugate control that does not contain tertiary antibody. 
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