Supplementary material for the article:

Relić, D.; Héberger, K.; Sakan, S.; Škrbić, B.; Popović, A.; Đorđević, D. Ranking and Similarity of Conventional, Microwave and Ultrasound Element Sequential Extraction Methods. Chemosphere 2018, 198, 103-110.

Table S3. Spearman`s correlations of ranking difference (diff) for CSE II, MWSE II, CSE III and MWSE III and elements after adequate step and technique (significant correlations ($\mathrm{p}<0.05$) are in bold)

	$\begin{array}{r} \text { diff } \\ \text { CSE II } \end{array}$		diff MWSE II		$\begin{array}{r} \text { diff } \\ \text { CSE III } \end{array}$		diff MWSE III
diff CSE II	1.000	diff MWSE II	1.000	diff CSE III	1.000	diff MWSE III	1.000
diff Al CSE II	0.401	diff_Al MWSE II	-0.257	diff Al CSE III	0.840	diff Al MWSE III	-0.040
diff Ba CSE II	0.463	diff Ba MWSE II	-0.082	diff Ba CSE III	0.336	diff Ba MWSE III	-0.195
diff Ca CSE II	0.475	diff Ca MWSE II	0.946	diff Ca CSE III	0.617	diff Ca MWSE III	0.639
diff Cd CSE II	0.140	diff Cd MWSE II	0.160	diff Cd CSE III	0.414	diff Cd MWSE III	0.216
diff Co CSE II	0.065	sff Co MWSE II	-0.194	diff Co CSE III	0.208	sff Co MWSE III	-0.241
diff Cr CSE II	0.143	dff Cr MWSE II	-0.155	diff Cr CSE III	0.446	dff Cr MWSE III	-0.190
diff Cu CSE II	0.252	dff Cu MWSE II	-0.268	diff Cu CSE III	0.314	dff Cu MWSE III	-0.136
diff Fe CSE II	0.065	dff Fe MWSE II	-0.231	diff Fe CSE III	0.400	dff Fe MWSE III	-0.033
diff K CSE II	0.517	dff K MWSE II	-0.228	diff K CSE III	0.444	dff K MWSE III	0.012
diff Mg CSE II	0.457	dff Mg MWSE II	0.159	diff Mg CSE III	0.363	dff Mg MWSE III	0.474
diff Mn CSE II	0.023	dff Mn MWSE II	-0.072	diff Mn CSE III	0.627	dff Mn MWSE III	-0.285
diff Na CSE II	-0.023	dff Na MWSE II	0.152	diff Na CSE III	0.178	dff Na MWSE III	-0.048
diff Ni CSE II	0.159	dff Ni MWSE II	-0.355	diff Ni CSE III	0.349	dff Ni MWSE III	-0.367
diff Pb CSE II	0.426	diff Pb MWSE II	-0.243	diff Pb CSE III	0.259	diff Pb MWSE III	-0.217
diff Si CSE II	0.540	diff Si MWSE II	-0.188	diff Si CSE III	0.759	diff Si MWSE III	-0.202
diff Sn CSE II	0.117	dff Sn MWSE II	-0.253	diff Sn CSE III	0.383	dff Sn MWSE III	-0.045
diff Sr CSE II	0.555	dff Sr MWSE II	0.879	diff Sr CSE III	0.326	dff Sr MWSE III	0.654
diff V CSE II	0.467	dff V MWSE II	-0.062	diff V CSE III	0.535	dff V MWSE III	0.002
diff Zn CSE II	0.113	dff Zn MWSE II	-0.129	diff Zn CSE III	0.079	dff Zn MWSE III	-0.046

