Supplementary data for article:

Čobeljić, B.; Pevec, A.; Turel, I.; Swart, M.; Mitić, D.; Milenković, M.; Marković, I.; Jovanović, M.; Sladić, D.; Jeremić, M.; et al. Synthesis, Characterization, DFT Calculations and Biological Activity of Derivatives of 3-Acetylpyridine and the Zinc(II) Complex with the Condensation Product of 3-Acetylpyridine and Semicarbazide. *Inorganica Chimica Acta* **2013**, *404*, 5–12. <u>https://doi.org/10.1016/j.ica.2013.04.017</u> Synthesis, characterization, DFT calculations and biological activity of derivatives of 3-acetylpyridine and the zinc(II) complex with the condensation product of 3-acetylpyridine and semicarbazide

Supplementary material

Božidar Čobeljić^a, Andrej Pevec^b, Iztok Turel^b, Marcel Swart^{c,d}, Dragana Mitić^a, Marina Milenković^e, Ivanka Marković^f, Maja Jovanović^f, Dušan Sladić^a, Marko Jeremić^a, Katarina Anđelković^{*a}

^a Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia

^b Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia

^c Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain

^d Institut de Química Computacional and Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain

^e Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Serbia

^f Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia

Contents

Fig. S1. Representation of the crystallographic structure of compound HL1	S2
Fig. S2. Hydrogen-bonding network of compound HL1	S3
Fig. S3. Representation of the crystallographic structure of compound HL3	S3

Fig. S4. Hydrogen-bonding network of compound HL3	.S4
Table S1.Crystal data and structure refinement details for HL1, HL3 and 1	S5
Table S2. Selected bond lengths (Å) and angles (°) of compounds HL1, HL3 and 1	.S6
Table S3. Hydrogen bonding geometry of compounds HL1, HL3 and 1	.S7
Table S4 . Computed NMR data (at COSMO-SSB-D/ET-pVQZ, in ppm) of 1 and assignn to atoms	nent
Table S5. Cartesian coordinates of optimized structures of 1, HL1 and ZnCl ₂ (HL1) ₁	so s9

Fig. S1. Representation of the crystallographic structure of compound HL1.

Fig. S2. Hydrogen-bonding network of compound HL1.

Fig. S3. Representation of the crystallographic structure of compound HL3.

Fig. S4. Hydrogen-bonding network of compound HL3.

Table S1

	HL1	HL3	1
formula	C ₈ H ₁₅ ClN ₄ O ₃	$C_{10}H_{16}ClN_3O_3$	$C_{16}H_{20}Cl_2N_8O_2Zn$
$Fw(g mol^{-1})$	250.69	261.71	492.67
crystal size (mm)	$0.20 \times 0.05 \times 0.05$	$0.50 \times 0.10 \times 0.10$	0.20× 0.13× 0.10
crystal color	colourless	colourless	colourless
crystal system	triclinic	monoclinic	orthorhombic
space group	<i>P</i> -1	$P2_{1}/c$	Pbcn
<i>a</i> (Å)	6.6772(3)	4.7804(2)	7.43810(10)
<i>b</i> (Å)	8.9768(3)	9.9478(3)	11.6257(2)
<i>c</i> (Å)	11.0700(5)	26.2508(10)	23.9731(5)
α (°)	113.504(2)	90	90
β (°)	94.574(3)	93.338(3)	90
γ (°)	100.428(3)	90	90
$V(Å^3)$	589.88(4)	1246.22(8)	2073.03(6)
Ζ	2	4	4
Calc. density (g cm ⁻³)	1.411	1.395	1.579
F(000)	264	552	1008
no. of collected reflns	4387	11595	4402
no. of independent reflns	2638	2853	2378
R _{int}	0.0179	0.0294	0.0178
no. of reflns used	2190	2237	1827
no. parameters	170	168	142
$R[I > 2\sigma(I)]^a$	0.0571	0.0381	0.0315
$wR_2(all data)^b$	0.1594	0.1092	0.0840
$Goof, S^c$	1.178	1.045	1.053
maximum/minimum residual electron density (e Å ⁻³)	+0.57/-0.33	+0.23/-0.20	+0.38/-0.32

Crystal data and structure refinement details for HL1, HL3 and 1.

 ${}^{a}R = \sum ||F_{o}| - |F_{c}|| \sum F_{o}|. {}^{b}wR_{2} = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}] \}^{1/2}.$ ${}^{c}S = \{\sum [(F_{o}^{2} - F_{c}^{2})^{2}] / (n/p) \}^{1/2} \text{ where } n \text{ is the number of reflections and } p \text{ is the total number of parameters refined.}$

	HL1				
N1-C1	1.344(3)	C1-N1-C5	123.3(2)		
N1-C5	1.328(4)	C2-C6-N2	113.8(2)		
N2-N3	1.363(3)	C6-N2-N3	119.1(2)		
C8–O1	1.233(3)	N2-N3-C8	119.0(2)		
N4-C8	1.337(4)	N3-C8-O1	119.1(2)		
	HI	_3			
N1-C1	1.335(2)	C1-N1-C5	123.44(15)		
N1-C5	1.327(2)	C2-C6-N2	114.94(13)		
N2-N3	1.3670(19)	C6-N2-N3	117.70(13)		
C8–O1	1.3395(19)	N2-N3-C8	117.93(13)		
C8–O2	1.200(2)	N3-C8-O1	108.01(13)		
C9–O1	1.450(2)	C8–O1–C9	116.48(13)		
	1				
Zn1–N1	2.0552(16)	N1–Zn1–Cl1	105.09(5)		
Zn1–Cl1	2.2298(6)	$N1-Zn1-N1^{i}$	112.55(9)		
N1-C1	1.353(2)	$N1-Zn1-Cl1^i$	109.14(5)		
N1-C5	1.334(3)	Cl1–Zn1–Cl1 ⁱ	116.02(4)		
C6-N2	1.280(3)	C1-N1-C5	117.96(18)		
N2-N3	1.367(2)	C2-C6-N2	112.99(17)		
C8–N3	1.374(3)	C6–N2–N3	121.19(17)		
C8–O1	1.237(2)	N2-N3-C8	116.83(17)		
N4C8	1.325(3)	N3-C8-O1	119.95(19)		

Table S2Selected bond lengths (Å) and angles (°) of compounds HL1, HL3 and 1.

Symmetry transformations used to generate equivalent atoms: (i) -x, y, -z+0.5.

$D - H \cdots A$	<i>d</i> (D−H)/ Å	<i>d</i> (H ⋯ A)/ Å	<i>d</i> (D ⋯ A)/ Å	<(DHA)/ °	Symmetry transformation for acceptors
HL1					
N1-H1N…O1	0.85(4)	2.33(3)	2.930(3)	127(3)	x, y, z–1
N1–H1N…O2w	0.85(4)	2.08(4)	2.814(4)	144(3)	
O1w-H1w…Cl1	0.93(3)	2.20(3)	3.131(3)	178(5)	-x, -y+2, -z+1
N3–H2N…O1w	0.87(3)	2.11(3)	2.966(3)	170(3)	x, y, z+1
O1w–H2w…O2w	0.94(4)	1.87(3)	2.800(4)	169(3)	-x+1, -y+2, -z+1
N4–H3N…Cl1	0.86(2)	2.80(2)	3.523(2)	143(3)	x, y–1, z
O2w-H3w…Cl1	0.93(3)	2.21(3)	3.109(3)	161(3)	
N4–H4N…Cl1	0.86(4)	2.48(4)	3.333(3)	169(3)	-x, -y+1, -z+2
O2w–H4w…O1w	0.94(3)	1.92(3)	2.815(3)	159(4)	
HL3					
N1–H1N…Cl1	0.858(17)	2.801(19)	3.3868(15)	127.0(14)	x-1, y-1, z
N1–H1N…Cl1	0.858(17)	2.441(16)	3.1651(14)	142.6(16)	-x, -y+1, -z
O1w-H1w…Cl1	0.90(2)	2.30(2)	3.1823(16)	167(2)	x+1, y, z
O1w-H2w…Cl1	0.90(2)	2.24(2)	3.1393(16)	178.8(18)	
N3–H2N…O1w	0.872(16)	2.050(17)	2.909(2)	168.1(15)	
1					
N4-H2N…O1	0.85(2)	2.04(2)	2.883(3)	175(2)	x+0.5, -y-0.5, -z
N3–H1N…O1	0.870(17)	2.266(18)	3.133(2)	175(2)	x-0.5, -y-0.5, -z

Table S3

Hydrogen bonding geometry of compounds HL1, HL3 and 1.

Table S4

Computed NMR	data (at COSMO	-SSB-D/ET-pVQ2	Z, in ppm) of 1	and assignment to atoms.
1			/ 11 /	0

Atoms	Conf. A (in blue in Fig.2)	Atoms	Conf. B (in red in Fig. 2) ^a
	^{1}H		
H(C1)	8.91, 8.89	H(C5)	8.86, 8.86
H(C5)	8.65, 8.64	H(C3)	8.76, 8.76
H(C3)	8.54, 8.54	H(N3)	8.17, 8.17
H(N3)	8.23, 8.21	H(C1)	7.94, 7.94
H(C4)	7.54, 7.54	H(C4)	7.66, 7.66
H(N4)	6.42, 6.37, 4.84, 4.77	H(N4)	6.46, 6.46, 4.89, 4.89
H(C7)	average 2.11	H(C7)	average 1.75
	(2.44, 2.41, 1.95, 1.95, 1.95, 1.93)		(2.09, 2.09, 1.75, 1.75, 1.40, 1.40)
	¹³ C		
C8	148.29, 147.62	C8	147.19, 147.19
C5	144.82, 144.77	C5	147.10, 147.10
C1	143.48, 143.46	C1	141.14, 141.14
C6	140.10, 140.06	C6	138.31, 138.31
C3	137.02, 136.73	C3	137.75, 137.75
C2	132.44, 132.42	C2	132.12, 132.12
C4	125.52, 125.35	C4	126.52, 126.52
C7	10.86, 10.86	C7	9.03, 9.03

a) identical because of C₂ symmetry present in conformer

Table S5

Cartesian coordinates of optimized structures of 1, HL1 and $ZnCl_2(HL1)_1$

1			
Zn	-0.021872	-2.435718	0.416255
Cl	-0.985717	-3.717146	-1.193439
Ν	6.560823	1.585014	0.564518
0	8.629906	2.528799	0.654573
Ν	-1.461127	-1.079485	1.028726
Cl	0.937232	-3.266491	2.301896
С	4.387905	0.687770	1.993261
Ν	5.536665	1.068810	-0.153347
Ν	-5.593095	1.087559	0.136849
Ν	7.785733	1.888840	-1.392596
Ν	1.427242	-1.288016	-0.515883
0	-8.733792	2.236656	-0.940627
С	4.492843	0.636526	0.493786
С	-3.457552	0.186655	0.535151
С	2.426502	-0.751098	0.212819
С	-4.483108	0.151358	-1.855481
Ν	-6.637404	1.393168	-0.667472
С	1.354049	-1.025689	-1.836816
Ν	-7.750673	2.347248	1.142347
С	-1.364739	-0.473092	2.229545
С	-3.343983	0.812465	1.793177
С	-2.478976	-0.760146	0.204080
С	7.720472	2.043648	-0.048152
С	3.320025	0.346598	-1.721360
С	-2.295210	0.478795	2.642699
С	3.409376	0.081073	-0.339771
С	-4.560692	0.498518	-0.393995
С	2.290806	-0.211517	-2.471143
С	-7.781472	2.004825	-0.169407
Н	2.202787	-0.015476	-3.539111
Н	5.140069	0.029060	2.457997
Н	3.398393	0.398998	2.359144
Н	4.582481	1.714024	2.346152
Η	8.522249	2.388677	-1.879423
Н	6.941586	1.640028	-1.901943
Н	2.435654	-1.033478	1.265637
Н	-5.227419	-0.620040	-2.113925
Н	-3.493351	-0.207401	-2.152726
Н	-4.706494	1.044067	-2.462528
Н	6.545421	1.645403	1.584572
Н	0.528030	-1.490325	-2.376027
Н	-7.022188	1.952282	1.732316
Н	-8.636686	2.598186	1.568818

Η	-0.525657	-0.775155	2.856860
Η	-4.080606	1.561310	2.085239
Η	-2.505491	-1.312421	-0.735357
Η	4.059852	0.996636	-2.188982
Η	-2.187688	0.953709	3.617197
Η	-6.660906	1.151473	-1.660302

HL1-protonated

С	3.322852	0.330947	0.240385
Ν	-2.776361	1.578297	-0.210733
С	0.206420	-2.382513	-0.170368
Ν	0.966034	-0.048043	0.082899
Ν	2.228800	-0.517536	0.084164
С	-2.519186	-1.091751	0.221365
Ν	3.043430	1.653528	0.312600
С	-0.009206	-0.902963	-0.035670
С	-1.364157	-0.322448	-0.017710
0	4.468287	-0.158353	0.266813
С	-3.900039	0.862732	0.020357
С	-1.544429	1.047138	-0.240449
С	-3.782835	-0.498897	0.241869
Η	-2.867948	2.579552	-0.383438
Η	0.917327	-2.582787	-0.988656
Η	-0.717074	-2.924212	-0.394176
Η	0.639466	-2.795978	0.755535
Η	-0.722341	1.725733	-0.446839
Η	-4.676895	-1.088756	0.432419
Η	-2.433961	-2.161299	0.407405
Η	3.793453	2.267076	0.613526
Η	2.081894	1.947847	0.462527
Η	-4.837303	1.410528	0.015388
Η	2.447393	-1.514271	0.021032

HL1-deprotonated

С	3.338996	0.287789	-0.077393
Ν	-3.798367	-0.530629	-0.185869
С	0.171817	-2.332397	0.162174
Ν	0.963867	-0.015523	-0.039878
Ν	2.219761	-0.528045	-0.013083
С	-1.572276	1.150333	0.125781
Ν	3.103798	1.624483	-0.103754
С	-0.036480	-0.846784	0.039719
С	-1.385405	-0.242599	0.006923
0	4.475283	-0.229244	-0.069142
С	-3.941510	0.802302	-0.067822
С	-2.546203	-1.025045	-0.149599
С	-2.858247	1.675591	0.085538
Η	0.678210	-2.724300	-0.735760
Η	-0.758173	-2.889098	0.302010

Н	0.821243	-2.547339	1.027118
Н	-2.471215	-2.107480	-0.261825
Η	-3.028334	2.749102	0.178354
Н	-0.706778	1.801065	0.253680
Η	2.159571	1.947218	-0.301429
Η	3.882826	2.217602	-0.370749
Η	-4.963651	1.187664	-0.095607
Η	2.406105	-1.530499	0.052250
Zn($Cl_2(HL1)_1$		0.000750
C	2.808560	-1.251555	0.290750
Ν	-3.220889	0.747389	0.919575
С	-0.686232	-3.227081	-0.545310
Ν	0.459355	-1.168131	0.124648
Ν	1.608905	-1.907150	0.151255
С	-2.925892	-1.219927	-1.068723
Ν	3.906896	-2.011958	0.316648
С	-0.655489	-1.774946	-0.179212
С	-1.895819	-0.987408	-0.141194
0	2.852927	0.011768	0.385744
С	-4.178564	0.531247	-0.003959
С	-2.113057	-0.006899	0.844934
С	-4.079297	-0.443381	-1.001694
Zn	0.980703	0.884644	0.389007
Η	0.010708	-3.433556	-1.373549
Η	-1.691464	-3.547953	-0.832414
Η	-0.371961	-3.835538	0.319913
Η	-1.368148	0.146897	1.630777
Η	-4.892819	-0.586213	-1.713103
Η	-2.815218	-1.982931	-1.840265
Η	4.807916	-1.560801	0.430953
Н	3.863228	-3.024026	0.264344
Н	-5.069879	1.158751	0.065820
Н	1.573280	-2.919872	0.047289
Cl	0.579834	2.110100	-1.446601
Cl	0.680591	1.778280	2.438838