Supplementary material for the article:

Ristovic, M. S.; Zianna, A.; Psomas, G.; Hatzidimitriou, A. G.; Coutouli-Argyropoulou, E.; Lalia-Kantouri, M. Interaction of Dinuclear Cadmium(II) 5-Cl-Salicylaldehyde Complexes with Calf-Thymus DNA. *Materials Science and Engineering C* **2016**, *61*, 579–590. https://doi.org/10.1016/j.msec.2015.12.054

Interaction of dinuclear cadmium(II) 5–Cl–salicylaldehyde complexes with calf–thymus DNA

Maja Sumar Ristovic ^{a, b}, Ariadni Zianna ^a, George Psomas ^a, Antonios G. Hatzidimitriou ^a, Evdoxia Coutouli-Argyropoulou ^c, Maria Lalia-Kantouri ^a *

Supplementary Information

S1. Interaction with CT DNA

The binding constant, K_b , can be obtained by monitoring the changes in the absorbance at the corresponding λ_{max} with increasing concentrations of CT DNA and it is given by the ratio of slope to the y intercept in plots $\frac{[DNA]}{(\epsilon_A - \epsilon_f)}$ versus [DNA], according to the Wolfe–Shimer equation [S1]:

$$\frac{[\text{DNA}]}{(\varepsilon_{\text{A}} - \varepsilon_{\text{f}})} = \frac{[\text{DNA}]}{(\varepsilon_{\text{b}} - \varepsilon_{\text{f}})} + \frac{1}{K_{\text{b}}(\varepsilon_{\text{b}} - \varepsilon_{\text{f}})}$$
 (eq. S1)

where [DNA] is the concentration of DNA in base pairs, $\varepsilon_A = A_{obsd}/[compound]$, ε_f = the extinction coefficient for the free compound and ε_b = the extinction coefficient for the compound in the fully bound form.

S2. Competitive studies with EB

The Stern–Volmer constant K_{SV} is used to evaluate the quenching efficiency for each compound according to the Stern–Volmer equation [S2]:

$$\frac{\text{Io}}{I} = 1 + K_{SV}[Q]$$
 (eq. S2)

^a Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

^b Faculty of Chemistry, University of Belgrade, Studenski trg 12-16, Belgrade, Serbia

^c Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

^{*} Corresponding author. Tel./fax: +30 2310 997844. E-mail address: lalia@chem.auth.gr (M. Lalia-Kantouri).

where Io and I are the emission intensities in the absence and the presence of the quencher, respectively, [Q] is the concentration of the quencher (i.e. complexes 1-5); K_{SV} is obtained from the Stern–Volmer plots by the slope of the diagram $\frac{Io}{I}$ vs [Q].

References

- [S1] A. Wolfe, G. Shimer, T. Meehan, Biochemistry 26 (1987) 6392–6396.
- [S2] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. Plenum Press, New York, (2006).

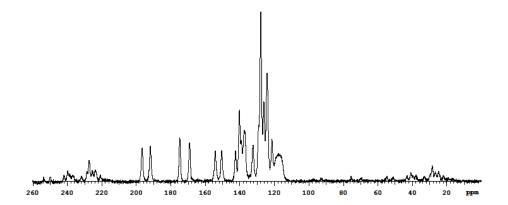
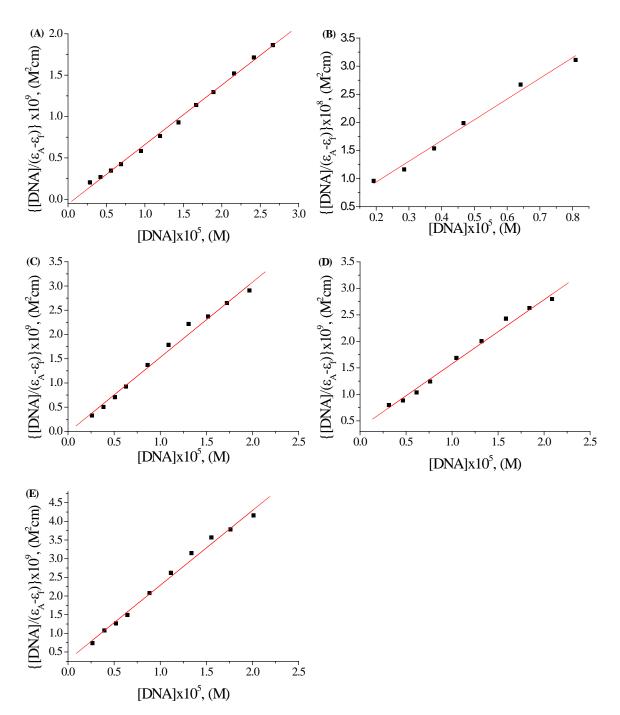
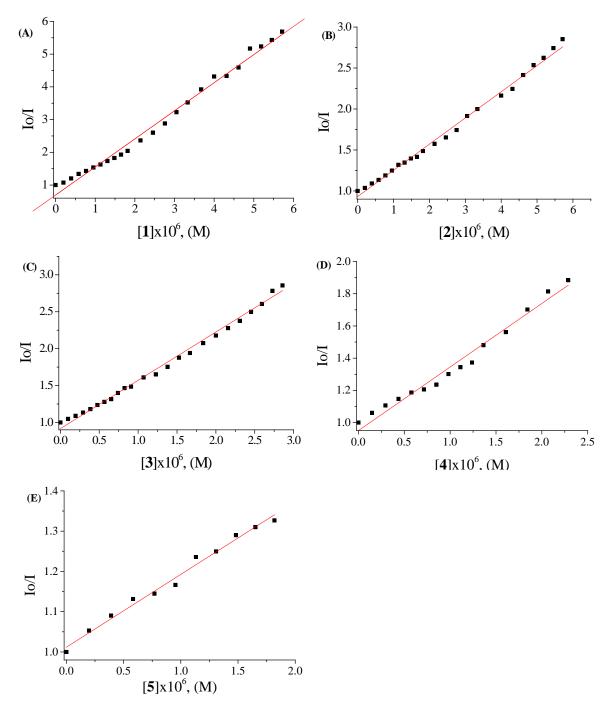




Fig. S1. ¹³C-NMR spectra in solid state of [Cd(5-Cl-salo)₂(phen)]₂, (3)

 $\textbf{Fig. S2}. \ (A) - (E) \ Plot \ of \ \frac{[DNA]}{(\epsilon_A - \epsilon_f)} \ \ vs \ [DNA] \ for \ complexes \ \textbf{1--5}, \ respectively.$

Fig. S3. (A)–(E) Stern–Volmer quenching plot of EB bound to CT DNA for complexes **1–5**, respectively.