Supplementary data for the article:

Bihelovic, F.; Ferjancic, Z. Total Synthesis of (\pm)-Alstoscholarisine A. Angewandte Chemie - International Edition 2016, 55 (7), 2569-2572. https://doi.org/10.1002/anie. 201510777

Angewandte mandment

Supporting Information

Total Synthesis of (\pm)-Alstoscholarisine A

Filip Bihelovic* and Zorana Ferjancic*
anie_201510777_sm_miscellaneous_information.pdf

Contents

General experimental 2
1 Experimental procedures 3
1.1 tert-Butyl 2-(2-ethoxy-2-oxoethyl)-3-methyl-1H-indole-1-carboxylate (12) 3
1.2 (E)-Ethyl 5-((allyloxycarbonyl)(methyl)amino)-2-(3-methyl-1H-indol-2-yl)pent-2-enoate (14) 3
1.3 (E)-Ethyl 2-(3-methyl-1H-indol-2-yl)-5-(methylamino)pent-2-enoate (10) 4
1.4 Tetracyclic aminoacetals $\mathbf{1 5}$ and 16 5
1.5 Alkene 17 7
1.6 Alcohol 18 7
1.7 Aldehyde 19 8
1.8 Lactone 6 9
1.9 Hemiketal 21 9
1.10 (\pm)-Alstoscholarisine A (1) 10
2 References 11
3 Scanned spectra in numerical order 12

General experimental

All chromatographic separations ${ }^{[1]}$ were performed on Silica gel 60 ($0.063-0.2 \mathrm{~mm}$), Merck. Standard techniques were used for the purification of reagents and solvents. ${ }^{[2]}$ NMR spectra were recorded on Bruker Avance III $500\left({ }^{1} \mathrm{H} N \mathrm{NR}\right.$ at $500 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR at 125 MHz), in deuterated chloroform, if not otherwise stated. Chemical shifts are expressed in ppm (δ) using tetramethylsilane as internal standard, coupling constants (J) are in Hz. IR spectra were recorded on a Nicolet 6700 FT instrument, and are expressed in cm^{-1}. Mass spectra were obtained on Agilent technologies 6210 TOF LC/MS instrument (LC: series 1200). Melting points were determined on a Kofler hot-stage apparatus and are uncorrected.

1 Experimental procedures

1.1 tert-Butyl 2-(2-ethoxy-2-oxoethyl)-3-methyl-1H-indole-1-carboxylate (12)

DMAP ($48 \mathrm{mg} ; 0.39 \mathrm{mmol} ; 10 \mathrm{~mol} \%$) and $\mathrm{Boc}_{2} \mathrm{O}(1.03 \mathrm{~g} ; 4.75 \mathrm{mmol} ; 1.2 \mathrm{eq}$) were added to a solution of ethyl 2-(3-methyl-1H-indol-2-yl)acetate ${ }^{[3]}$ ($860 \mathrm{mg} ; 3.90 \mathrm{mmol}$) in THF (9.4 mL) and the mixture was stirred at room temperature for 20 min . The mixture was diluted with dichloromethane, washed with 1 M KHSO 4 , saturated NaHCO_{3} and brine and dried over anhydrous MgSO_{4}. The solvent was removed on rotovap, and the residue was purified by dry-flash chromatography (petroleum ether/EtOAc=95:5), to afford product 12, which was further purified by recrystallization from EtOAc/petroleum ether. A total of $740 \mathrm{mg}(60 \%)$ of pure product $\mathbf{1 2}$ was obtained, as a white microcrystalline solid.
mp $114-115{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, \mathrm{~J}=8.2,1 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=7.6,1 \mathrm{H}), 7.27\left(\mathrm{dt}, J_{1}=1.3, J_{2}=7.2,1 \mathrm{H}\right), 7.23(\mathrm{dt}$, $\left.J_{1}=1.2, J_{2}=7.6,1 \mathrm{H}\right), 4.16(\mathrm{q}, \mathrm{J}=7.1,2 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.1,3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,150.6,135.7,130.3,128.8,124.0,122.3,118.4,116.4,115.6,83.7$, 60.8, 33.2, 28.2, 14.2, 8.7.

IR (film): $v^{\sim}=2980,1728,1458,1358,1332,1175 \mathrm{~cm}^{-1}$.
HRMS (m / z) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}$: 340.1519, found: 340.1521.
$\boldsymbol{R}_{\mathrm{f}}=0.43$ (petroleum ether/EtOAc=9:1).

1.2 (E)-Ethyl 5-((allyloxycarbonyl)(methyl)amino)-2-(3-methyl-1H-indol-2-yl)pent-2-enoate (14)

n-Butyl lithium ($c=1.3 \mathrm{M}, 0.65 \mathrm{~mL} ; 0.847 \mathrm{mmol} ; 1.1 \mathrm{eq}$) was added to a solution of diisopropylamine ($120 \mu \mathrm{~L} ; 0.847 \mathrm{mmol} ; 1.1 \mathrm{eq}$) in dry THF (2 mL) at $-20^{\circ} \mathrm{C}$, under argon. After 20 minutes of stirring, the solution of LDA was cooled down to $-78^{\circ} \mathrm{C}$, and a solution of ester 12 (245 mg ; 0.77 mmol) in THF (2 mL) was added. The pale yellow solution was stirred for 20 minutes, and a solution of aldehyde $\mathbf{1 3}^{[4]}$ ($145 \mathrm{mg} ; 0.847 \mathrm{mmol} ; 1.1 \mathrm{eq}$) in THF (2 mL) was introduced. The reaction mixture was allowed to reach $-40{ }^{\circ} \mathrm{C}$, over 30 minutes, and the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was partitioned between water and ether, the organic extract was washed with brine, dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The residue was dissolved in dry THF (5 mL) and sodium hydride ($24 \mathrm{mg} ; 1.0 \mathrm{mmol} ; 1.3 \mathrm{eq}$) was added in two portions, under an argon atmosphere. The reaction mixture was brought to reflux and, after 5 minutes, cooled down to the room temperature. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added, the product was extracted with ether, the organic extract was washed with brine, dried over anhydrous MgSO_{4} and concentrated on rotovap. The residue was purified by column chromatography ($\mathrm{PhH} / \mathrm{EtOAc}=8: 2$), to afford $213 \mathrm{mg}(75 \%)$ of acrylate $\mathbf{1 4}$, as a colorless oil. The yield of product 14, based on the recovered starting material 12 (49 mg), was 93%.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}, 343 \mathrm{~K}$) $\delta 10.56(\mathrm{bs}, 1 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=8.1,1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=7.6,1 \mathrm{H}), 7.13$ (t, J=6.9, $1 \mathrm{H}), 7.08\left(\mathrm{dt}, J_{1}=1.0, J_{2}=7.1,1 \mathrm{H}\right), 6.99\left(\mathrm{dt}, J_{1}=1.0, J_{2}=7.5,1 \mathrm{H}\right), 5.83(\mathrm{bs}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=16.6,1 \mathrm{H}), 5.09(\mathrm{~d}$, $J=9.1,1 H$), $4.43(\mathrm{~d}, J=4.3,2 \mathrm{H}), 4.17(\mathrm{q}, J=7.0,2 \mathrm{H}), 3.36(\mathrm{t}, J=6.7,2 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{q}, \mathrm{J}=6.7,2 \mathrm{H}), 2.08$ ($\mathrm{s}, 3 \mathrm{H}$), $1.21(\mathrm{t}, \mathrm{J}=7.1,3 \mathrm{H})$.
${ }^{13}$ C NMR (125 MHz, DMSO, 343 K$) \delta$ 165.2, 154.8, 144.4, 135.6, 133.1, 127.9, 127.8, 126.9, 120.7, 117.8, 117.7, 116.3, 110.5, 108.4, 64.7, 60.0, 46.7, 33.5, 28.0, 13.7, 8.5.

IR (film): $v^{\sim}=3328,2936,1705,1261,1208 \mathrm{~cm}^{-1}$.
HRMS (m/z) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$: 393.1785, found: 393.1784.
$\boldsymbol{R}_{\mathrm{f}}=0.47(\mathrm{PhH} / \mathrm{EtOAc}=8: 2)$.

1.3 (E)-Ethyl 2-(3-methyl-1H-indol-2-yl)-5-(methylamino)pent-2-enoate (10)

A solution of palladium acetate ($19.6 \mathrm{mg} ; 10 \mathrm{~mol} \%$) and triphenylphosphine ($114 \mathrm{mg} ; 50 \mathrm{~mol} \%$) in THF (16 mL) was stirred for 10 minutes under argon, at room temperature. A solution of carbamate 14 (324 $\mathrm{mg} ; 0.875 \mathrm{mmol}$) and morpholine ($1.5 \mathrm{~mL} ; 17.2 \mathrm{mmol} ; 20 \mathrm{eq}$) in THF (16 mL) was added, and the reaction mixture was stirred for 60 minutes. The mixture was evaporated to dryness and the residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=6: 4\right)$, to yield $180 \mathrm{mg}(72 \%)$ of amine 10 , as a pale yellowish oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.10(\mathrm{bs}, 1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=7.5,1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.0,1 \mathrm{H}), 7.17\left(\mathrm{dt}, J_{1}=1.1, J_{2}=7.1\right.$, $1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{q}, \mathrm{J}=7.1,2 \mathrm{H}), 2.78(\mathrm{t}, \mathrm{J}=6.2,2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.35\left(\mathrm{dt}, \mathrm{J}_{1}=6.5, J_{2}=7.8,2 \mathrm{H}\right)$, $2.18(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{bs}, 1 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.1,3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 167.0, 144.4, 135.7, 128.9, 128.1, 127.7, 121.8, 118.7 (two signals), 110.9, 110.8, 61.1, 49.8, 36.4, 30.3, 14.2, 9.7.

IR (film): $v^{\sim}=3369,3180,2955,1712,1463,1247 \mathrm{~cm}^{-1}$.
HRMS (m/z) [$\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}$: 287.1754, found: 287.1761.
$\boldsymbol{R}_{\mathrm{f}}=0.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=6: 4\right)$.

1.4 Tetracyclic aminoacetals 15 and 16

A solution of amine 10 ($180 \mathrm{mg} ; 0.629 \mathrm{mmol}$) and aldehyde $\mathbf{1 1}{ }^{[5]}$ ($285 \mathrm{mg} ; 1.257 \mathrm{mmol} ; 2 \mathrm{eq}$) in dry acetonitrile (15 mL) was heated to $78{ }^{\circ} \mathrm{C}$ for 9 h , in the presence of $4 \AA$ molecular sieves (200 mg). The reaction mixture was filtered through a plug of celite, the celite was washed with MeCN, and the filtrate was evaporated to dryness. The residue was dissolved in ethanol (10 mL) and sodium borohydride (31 $\mathrm{mg} ; 0.817 \mathrm{mmol} ; 1.3 \mathrm{eq}$) was added at rt , to reduce the excess of selenoaldehyde $\mathbf{1 1}$. After 15 minutes of stirring, saturated ammonium chloride was added and the organics were extracted with ether, washed with brine and dried over anhydrous magnesium sulfate. The solvent was removed on rotovap to afford a 1:1 mixture of diastereomeric esters $\mathbf{1 5}$ and 16, separable on TLC. In order to perform the isomerization of 15 to 16, the crude mixture was dissolved in ethanol (10 mL), DBU ($470 \mu \mathrm{~L}$; 3.143 mmol; 5 eq) was added and the mixture was stirred at $70^{\circ} \mathrm{C}$ for 45 minutes. The mixture was diluted with ether, washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried over anhydrous MgSO_{4} and concentrated on rotovap. The residue was purified by column chromatography (PhH/EtOAc=95:5), to yield 220 mg (71%) of ester 16, as a pale yellow oil. A smaller amount of a more polar diastereomer 15 was isolated (59 mg ; 19%), which could be isomerized with DBU in another isomerization cycle.

Major diastereomer 16

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8.0,1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.12\left(\mathrm{dt}, \mathrm{J}_{1}=1.2\right.$, $\left.J_{2}=7.0,1 \mathrm{H}\right), 7.06\left(\mathrm{dt}, \mathrm{J}_{1}=1.2, J_{2}=7.6,1 \mathrm{H}\right), 5.11(\mathrm{~d}, \mathrm{~J}=2.7,1 \mathrm{H}), 4.20-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 3.06-2.97$ $(\mathrm{m}, 2 \mathrm{H}), 2.62(\mathrm{t}, \mathrm{J}=6.1,1 \mathrm{H}), 2.40-2.28(\mathrm{~m}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.10-1.99(\mathrm{~m}$, $2 \mathrm{H}), 1.56(\mathrm{bd}, \mathrm{J}=13.1,1 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=7.2,3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,136.6,132.4,130.3,129.4,129.1,128.3,126.8,120.7,118.8,118.0$, $110.2,106.8,69.4,61.1,45.9,45.6,45.1,38.2,32.1,30.8,27.3,25.4,14.3,8.5$.
IR (film): $v^{\sim}=2933,1729,1456,1176,1157 \mathrm{~cm}^{-1}$.
HRMS (m/z) [$\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Se}: 497.1702$, found: 497.1691.
$\boldsymbol{R}_{\mathrm{f}}=0.48(\mathrm{PhH} / \mathrm{EtOAc}=95: 5)$.

The NOESY spectrum didn't show NOE correlation between H-20 and $\mathrm{H}_{\mathrm{a}}-14$, which would be present if the selenium containing side chain adopted equatorial position. On the other hand, NOESY spectrum showed correlation between $\mathrm{H}-22$ and $\mathrm{N}-\mathrm{Me}$, additionally proving the relative configuration of $\mathrm{C}-20$. The stereochemistry of C 16 was determined by the presence of NOESY correlation between $\mathrm{H}-16$ and $\mathrm{H}_{\mathrm{e}}-14$, while the correlation between $\mathrm{H}-16$ and $\mathrm{H}-20$ is missing.

Minor diastereomer 15

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.47$ (m, 3H), $7.35(\mathrm{~d}, \mathrm{~J}=7.9,1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.14$ (dt, $\mathrm{J}_{1}=1.3$, $J_{2}=7.1,1 \mathrm{H}$), $7.08\left(\mathrm{dt}, J_{1}=1.0, J_{2}=7.1,1 \mathrm{H}\right), 5.05(\mathrm{~d}, \mathrm{~J}=2.5,1 \mathrm{H}), 4.33-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{~d}, \mathrm{~J}=6.8,1 \mathrm{H}), 3.05-$ $2.95(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.29(\mathrm{~m}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.08-$ $1.98(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{bd}, \mathrm{J}=15.1,1 \mathrm{H}), 1.31(\mathrm{t}, \mathrm{J}=7.3,3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,136.4,132.4,130.1,129.6,129.1,128.4,126.8,120.8,118.9,117.9$, 109.6, 107.2, 69.5, 60.9, 45.8, 45.4, 44.7, 41.4, 31.0, 30.9, 25.4, 23.2, 14.3, 9.0.

IR (film): $v^{\sim}=2935,1738,1457,1169 \mathrm{~cm}^{-1}$.
HRMS $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Se}: 497.1702$, found: 497.1694.
$\boldsymbol{R}_{\mathrm{f}}=0.30(\mathrm{PhH} / \mathrm{EtOAc}=95: 5)$.

The NOESY spectrum showed NOE correlation between $\mathrm{H}-20$ and $\mathrm{H}-$ 16 , proving the relative configuration of both $\mathrm{C}-16$ and $\mathrm{C}-20$.

1.5 Alkene 17

m CPBA (77%; $132 \mathrm{mg} ; 0.441 \mathrm{mmol} ; 1.1 \mathrm{eq}$) was added to a cold $\left(-20^{\circ} \mathrm{C}\right)$ solution of ester $\mathbf{1 6}$ (200 mg; 0.404 mmol) in chloroform (13 mL) and the mixture was stirred for 20 minutes. $\mathrm{Me}_{2} \mathrm{~S}(60 \mu \mathrm{~L} ; 0.818$ mmol; 2 eq) was added, followed by DIPA ($340 \mu \mathrm{~L} ; 2.426 \mathrm{mmol} ; 6 \mathrm{eq}$) and the mixture was stirred at 65 ${ }^{\circ} \mathrm{C}$ for 45 minutes. The volatiles were removed under reduced pressure, and the residue was purified by column chromatography ($\mathrm{PhH} / \mathrm{EtOAc}=9: 1$), to yield 113 mg (83%) of alkene 17 , as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~d}, \mathrm{~J}=7.7,1 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=8.1,1 \mathrm{H}), 7.13\left(\mathrm{dt}, J_{1}=1.2, J_{2}=7.1,1 \mathrm{H}\right), 7.07(\mathrm{dt}$, $J_{1}=1.0, J_{2}=7.4,1 \mathrm{H}$), 6.36 ($\mathrm{ddd}, J_{1}=7.4, J_{2}=10.7, J_{3}=17.2,1 \mathrm{H}$), $5.27\left(\mathrm{dt}, J_{1}=1.5, J_{2}=8.5,1 \mathrm{H}\right.$), $5.24(\mathrm{~d}, \mathrm{~J}=1.2$, $1 \mathrm{H}), 5.18(\mathrm{~d}, \mathrm{~J}=2.9,1 \mathrm{H}), 4.22-4.09(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{~d}, \mathrm{~J}=6.9,1 \mathrm{H}), 2.47-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.30$ ($\mathrm{m}, 1 \mathrm{H}$), $2.26(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.10\left(\mathrm{dt}, \mathrm{J}_{1}=4.1, J_{2}=12.7,1 \mathrm{H}\right), 1.60(\mathrm{bd}, \mathrm{J}=14.1,1 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.0,3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,138.4,136.7,129.0,128.3,120.8,118.9,118.1,116.6,110.2,106.9$, $70.2,61.1,45.8,45.7,45.1,42.0,33.6,27.5,14.3,8.6$.
IR (film): $v^{\sim}=2934,1730,1454,1176,1157 \mathrm{~cm}^{-1}$.
HRMS (m/z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}: 339.2067$, found: 339.2067.
$\boldsymbol{R}_{\mathrm{f}}=0.60(\mathrm{PhH} / \mathrm{EtOAc}=9: 1)$.

1.6 Alcohol 18

A solution of Dibal-H in hexane ($1 \mathrm{M} ; 7 \mathrm{~mL} ; 6.97 \mathrm{mmol} ; 20 \mathrm{eq}$) was added to a cold $\left(-20^{\circ} \mathrm{C}\right)$ solution of alkene 17 ($118 \mathrm{mg} ; 0.349 \mathrm{mmol}$) in dichloromethane (30 mL), under argon. The mixture was stirred for 30 minutes, and then quenched by a careful addition of a saturated aqueous solution of Rochelle's salt. After additional 1 h of stirring at room temperature, the mixture was extracted with ether. The organic extract was washed with brine, dried over anhydrous MgSO_{4}, concentrated under reduced pressure and the residue was purified by column chromatography ($\mathrm{PhH} / E t O A c=1: 1$), to afford $83 \mathrm{mg}(81 \%)$ of the alcohol 18, as a white solid.
mp 88-90 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~d}, \mathrm{~J}=7.9,1 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.2,1 \mathrm{H}), 7.11\left(\mathrm{dt}, J_{1}=1.6, J_{2}=7.5,1 \mathrm{H}\right), 7.07(\mathrm{dt}$, $J_{1}=1.2, J_{2}=7.4,1 \mathrm{H}$), 6.40 (ddd, $\left.J_{1}=7.3, J_{2}=10.7, J_{3}=17.8,1 \mathrm{H}\right), 5.29\left(\mathrm{dt}, J_{1}=1.5, J_{2}=9.9,1 \mathrm{H}\right), 5.26(\mathrm{t}, \mathrm{J}=1.6,1 \mathrm{H})$, 5.16 (d, J=2.6, 1H), 3.88 (dd, $J_{1}=3.5, J_{2}=10.2,1 \mathrm{H}$), $3.67\left(\mathrm{t}, \mathrm{J}=9.2,1 \mathrm{H}\right.$), 3.27 ($\mathrm{dd}, \mathrm{J}_{1}=4.4, J_{2}=9.4,1 \mathrm{H}$), 2.94 (d, $J=6.9,1 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.08\left(\mathrm{dt}, J_{1}=3.8, J_{2}=12.3,1 \mathrm{H}\right)$, 1.56 (bs, 1H, OH), 1.51 (bd, J=13.3, 1H).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.8,136.6,132.5,128.4,120.5,118.8,117.7,116.2,110.1,105.3,70.5$, 64.3, 46.3, 45.1, 42.2, 41.3, 30.9, 27.5, 9.1.

IR (film): $v^{\sim}=3361,2932,1457,1323,1038 \mathrm{~cm}^{-1}$.
HRMS (m/z) [$\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}$: 297.1961, found: 297.1956.
$\boldsymbol{R}_{\mathrm{f}}=0.58(\mathrm{PhH} / \mathrm{EtOAc}=1: 1)$.

1.7 Aldehyde 19

A solution of alcohol 18 ($81 \mathrm{mg} ; 0.273 \mathrm{mmol}$), OsO_{4} (2.5% in t-BuOH; $73 \mu \mathrm{~L} ; 2 \mathrm{~mol} \%$) and NMO (50% solution in water; $280 \mu \mathrm{~L} ; 1.37 \mathrm{mmol} ; 5 \mathrm{eq}$) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}=2: 1(6 \mathrm{~mL})$ was stirred 13 h at room temperature. Excess of solid sodium-sulfite was added and the suspension was stirred for additional 30 minutes. The reaction mixture was diluted with ether, the organic layer was washed with brine and dried over anhydrous MgSO_{4}. The solvent was removed under reduced pressure, to afford 88 mg (98\%) of the dihydroxylated product, as a mixture of inseparable diastereoisomers, in form of a colorless solid. Lead tetraacetate ($180 \mathrm{mg} ; 0.41 \mathrm{mmol} ; 1.5 \mathrm{eq}$) was added to a solution of crude triol ($88 \mathrm{mg} ; 0.266$ mmol) in ethyl acetate (75 mL) and the mixture was stirred at room temperature for 30 minutes. The resulting orange suspension was filtered through a pad of celite and silica (eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=9: 1$) and the clear filtrate was evaporated on rotovap, to yield crude aldehyde 19. This aldehyde (77 mg) was used immediately for the preparation of lactone 6 , due to its high instability.

1.8 Lactone 6

DBU ($34 \mu \mathrm{~L} ; 0.23 \mathrm{mmol} ; 1 \mathrm{eq}$) was added to a solution of a freshly prepared aldehyde 19 in chloroform (2 mL), and the mixture was stirred at room temperature for 45 minutes. Dess-Martin periodinane (390 $\mathrm{mg} ; 0.92 \mathrm{mmol} ; 4 \mathrm{eq}$) was added to the reaction mixture and stirring was continued for 60 minutes. The mixture was diluted with ether, washed with 10% sodium thiosulfate solution, saturated sodium bicarbonate and brine, and the organic extract was dried over anhydrous MgSO_{4}. After concentration on rotovap, the residue was purified by column chromatography ($\mathrm{PhH} / \mathrm{EtOH}=9: 1$), to afford 23 mg (34% over 4 steps, from alkene 18) of pure lactone 6 , as a white solid.
mp $180-182^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50$ (d, J=7.9, 1H), 7.39 (d, J=8.3, 1H), 7.14 (dt, $J_{1}=1.2, J_{2}=7.1,1 \mathrm{H}$), $7.09(\mathrm{dt}$, $J_{1}=1.1, J_{2}=7.9,1 \mathrm{H}$), 5.54 (d, J=3.1, 1H), 4.56 (dd, $J_{1}=2.5, J_{2}=10.0,1 \mathrm{H}$), 4.23 (dd, $\left.J_{1}=1.3, J_{2}=10.3,1 \mathrm{H}\right), 3.47-$ $3.41(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{bs}, 1 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{dt}$, $J_{1}=3.8, J_{2}=12.5,1 \mathrm{H}$), 1.88 (bd, J=13.8, 1H).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,136.9,132.0,128.8,121.3,119.5,118.1,110.8,105.9,76.3,69.7$, 45.5, 45.1, 44.8, 32.8, 29.4, 28.0, 8.2.

IR (film): $v^{\sim}=2921,2853,1730,1457,1242 \mathrm{~cm}^{-1}$.
HRMS (m/z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$: 297.1598, found: 297.1597.
$\boldsymbol{R}_{\mathrm{f}}=0.22(\mathrm{PhH} / \mathrm{EtOAc}=1: 4)$.

1.9 Hemiketal 21

MeLi (3 M in diethoxymethane; $30 \mu \mathrm{~L}$; $0.10 \mathrm{mmol} ; 2$ eq) was added to a cold $\left(-78{ }^{\circ} \mathrm{C}\right.$) solution of lactone $6(15 \mathrm{mg} ; 0.05 \mathrm{mmol})$ in dry tetrahydrofuran (2 mL), under argon. After 15 minutes of stirring, the reaction mixture was diluted with ether, washed with brine and dried over anhydrous MgSO_{4}. The
solvent was removed on rotovap and the residue was purified by column chromatography ($\mathrm{PhH} / \mathrm{EtOH}=9: 1$), to afford 10.3 mg (66%) of the hemiketal 21, as a colorless film.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~d}, \mathrm{~J}=7.6,1 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=7.9,1 \mathrm{H}), 7.09\left(\mathrm{dt}, \mathrm{J}_{1}=1.4, J_{2}=7.0,1 \mathrm{H}\right), 7.05(\mathrm{dt}$, $J_{1}=1.3, J_{2}=7.3,1 \mathrm{H}$), 5.30 (d, J=2.5, 1H), 4.12 (dd, $J_{1}=1.3, J_{2}=10.0,1 \mathrm{H}$), 3.44 ($\mathrm{dd}, J_{1}=2.3, J_{2}=9.9,1 \mathrm{H}$), 3.05 (bs, 1H), 2.78-2.74 (m, 1H), 2.45-2.42 (m, 1H), 2.37-2.32 (m, 1H), $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.04$ ($\mathrm{m}, 1 \mathrm{H}$), $1.91\left(\mathrm{dt}, \mathrm{J}_{1}=3.8, \mathrm{~J}_{2}=12.0,1 \mathrm{H}\right), 1.80(\mathrm{bd}, \mathrm{J}=13.6,1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 136.9, 135.1, 128.9, 120.3, 118.8, 118.0, 109.9, 104.0, 96.1, 68.4, 68.0 , 45.8, 45.6, 44.8, 34.3, 30.1, 28.2, 27.4, 8.0.

IR (film): $v^{\sim}=3380,2927,2861,1457,1323,1130,1072 \mathrm{~cm}^{-1}$.
HRMS (m/z) [$\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}$: 313.1910, found: 313.1900.
$\boldsymbol{R}_{\mathrm{f}}=0.26(\mathrm{PhH} / \mathrm{EtOH}=9: 1)$.

1.10 (\pm)-Alstoscholarisine A (1)

Triethylsilane ($16 \mu \mathrm{~L}$; $0.1 \mathrm{mmol} ; 3.5 \mathrm{eq}$) and trimethylsilyl trifluoromethanesulfonate ($13 \mu \mathrm{~L}$; 0.072 mmol; 2.5 eq) were added to a cold ($-78{ }^{\circ} \mathrm{C}$) solution of hemiketal 21 ($9 \mathrm{mg} ; 0.029 \mathrm{mmol}$) in dry dichloromethane (0.9 mL), under argon. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 45 minutes, before the reaction was quenched by the addition of 3 drops of triethylamine. The reaction mixture was diluted with ether, washed with saturated sodium bicarbonate and brine, dried over anhydrous MgSO_{4} and evaporated to dryness. The crude product was purified by column chromatography ($\mathrm{PhH} / \mathrm{EtOH}=9: 1$), to afford $6.5 \mathrm{mg}(77 \%)$ of pure (\pm)-alstoscholarisine A (1), as a colorless film.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.52$ ($\mathrm{d}, \mathrm{J}=8.4,1 \mathrm{H}$), $7.42(\mathrm{~d}, \mathrm{~J}=7.8,1 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=7.5,1 \mathrm{H}), 6.99(\mathrm{t}, \mathrm{J}=7.5$, 1 H), $5.50(\mathrm{~s}, 1 \mathrm{H}), 3.82-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~d}, \mathrm{~J}=10.5,1 \mathrm{H}), 3.63(\mathrm{~d}, \mathrm{~J}=10.5,1 \mathrm{H}), 3.14(\mathrm{bs}, 1 \mathrm{H}), 2.36$ (dd, $J_{1}=6.1, J_{2}=12.2,1 \mathrm{H}$), $2.31(\mathrm{bs}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{bs}, 1 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{dt}$, $J_{1}=3.3, J_{2}=12.7,1 \mathrm{H}$), 1.83 (bd, $\left.J=14.1,1 \mathrm{H}\right), 1.25$ ($\mathrm{d}, \mathrm{J}=6.6,3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 138.7,137.0,130.4,121.5,120.0,118.8,111.5,105.3,75.6,74.5,67.9$, 47.5, 45.7, 43.3, 36.2, 34.8, 31.4, 18.8, 8.2.

IR (film): $v^{\sim}=2917,2852,1459,1334,1319,1121,1091 \mathrm{~cm}^{-1}$.
HRMS (m/z) [$\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}: 297.1961$, found: 297.1954.
$\boldsymbol{R}_{\mathrm{f}}=0.36(\mathrm{PhH} / \mathrm{EtOH}=9: 1)$.

2 References

[1] For description of the technique of dry-flash chromatography, see: a) L. M. Harwood, Aldrichimica Acta, 1985, 18, 25; b) Vogel's Textbook of Practical Organic Chemistry, Longman Scientific \& Technical, $5^{\text {th }}$ edition, London, 1989, p. 220; c) A recent account which includes some improvements of the separation technique: D. S. Pedersen, C. Rosenbohm, Synthesis, 2001, 2431-2434.
[2] D. D. Perrin, W. L. F. Armarego, Purification of Laboratory Chemicals, $3^{\text {rd }}$ edition, Pergamon Press, 1988.
[3] J. Huang, L. Zhao, Y. Liu, W. Cao, X. Wu, Org. Lett. 2013, 15, 4338-4341.
[4] a) S. Blechert, R. Knier, H. Schroers, T. Wirth, Synthesis, 1995, 592-604; b) A. Wohl, M. S. Losanitsch, Chem. Ber. 1907, 96, 4685.
[5] J. Becker, L. Butt, V. von Kiedrowski, E. Mischler, F. Quentin, M. Hiersemann, J. Org. Chem. 2014, 79, 3040-3051.

3 Scanned spectra in numerical order

(\pm)-Alstoscholarisine A (1)

FB-V-1298-R2
343 K
343 K

RB-V-1294-R2

円 $\mathrm{B}-\mathrm{V}-1310-\mathrm{RR} 1$

R-|

FB-V-1329-K

B-V-13A5

	+	i

M.

